
Eyedea Anonymzier
Developer’s guide Version 7.0

Copyright © 2024, Eyedea Recognition s. r. o.

All rights reserved

Eyedea Recognition s. r. o. is not liable for any damage or loss caused by incorrect or inaccurate results or

unauthorized use of the Anonymzier software.

Thales, the Thales logo, are trademarks and service marks of Thales S.A. and are registered in certain coun-

tries. Sentinel, Sentinel Admin Control Center and Sentinel Hardware Key are registered trademarks of

Thales S.A..

NVIDIA, the NVIDIA logo, GeForce, GeForce GTX, CUDA, the CUDA logo are trademarks and/or registered

trademarks of NVIDIA Corporation in the U.S. and/or other countries.

Microsoft Windows, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows 10,

Windows 11, Windows logo and Visual Studio are registered trademarks of Microsoft Corporation in the

United States and/or other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Python is a registered trademark of The Python Software Foundation. The Python logos (in several variants)

are use trademarks of The Python Software Foundation as well.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners.

All personal information in photos in this document were either anonymized or altered to avoid possibility

of direct or indirect identification of any person.

Contact:

Address: Eyedea Recognition, s.r.o.

Vyšehradská 320/49

128 00, Prague 2

Czech Republic

web: www.eyedea.cz

email: info@eyedea.cz

https://www.eyedea.cz
mailto:info@eyedea.cz

TABLE OF CONTENTS 3

Table of Contents
1 Product Description 4

1.1 Technical Details . 4

2 Distribution Contents 5

3 Installation Guide 6

3.1 Pre-installation . 6

3.2 Sentinel LDK Installation . 6

3.3 Verification of Installation . 6

3.4 Installation Failures . 7

3.5 Managing Licenses . 7

3.6 License Error Codes . 8

3.7 TensorRT . 8

3.8 OpenGL Prerequisites . 9

4 SDK Application Interface 10

4.1 Structures . 10

4.2 Functions . 13

5 Examples 19

5.1 Anonymizer Example – files . 19

5.2 Anonymizer Example – buffers . 21

6 Anonymizer command line interface 23

7 Anonymzier Licensing 25

7.1 License Key Types . 25

7.2 Licenses Overview . 25

7.3 License Management . 26

7.4 License Update . 27

8 Third Party Software 29

Eyedea Recogniton, s.r.o.

Product Description 4

1 Product Description
The Anonymizer SDK is a versatile, cross-platform software library designed for seamless anonymization of

RGB images. It detects and blurs faces and car license plates at various scales and orientations, including

support for high-resolution spherical images. The package includes a command-line application for batch

image processing. It supports both single-line and multi-line license plates of EU and North America (Mex-

ico, US, Canada) sizes or similar dimensions. Detection of other types of license plates is available upon

request.

Example of anonymized image (left) and image with highlited detections for better inspection (right).

1.1 Technical Details
The Anonymizer SDK is a comprehensive tool that now includes multiple detection modules for enhanced

privacy anddata security in images. It comprises a face detector and an advanceddetector for license plates

and other objects such as car boxes and windshields. This modular approach allows for the adaptability of

the SDK, with the potential to include additional detection modules as needed. Detected areas are then

processed according to the user’s requirements: they can be seamlessly blurred for privacy or highlighted

to facilitate a thorough visual inspection of the results.

Anonymizer SDK

User’s Code

C/C++

C native API

Face Detector LP Detector ...

Image blurring

The Anonymizer library provides following APIs:

• C native API

Officially supported operating systems and platforms:

• Windows 10 and 11, 64 bit

• Ubuntu 20.04 and higher, 64 bit

• Other platforms on request

Eyedea Recogniton, s.r.o.

Distribution Contents 5

2 Distribution Contents
The following list is an excerpt from the LPM SDK directory structure, highlighting the most important

directories and files contained in the software distribution. A brief description of the items is provided.

� [AnonymizerSDK] . distribution main folder

� sdk .Anonymizer engine folder

� include . Anonymizer header files

� lib . Anonymizer libraries

� plugins . Anonymizer backend plugins for detection

� models . Anonymizer detectors models folder

� applications . Anonymizer applications folder

� anonymizer-cli . Batch processing application folder

� examples .Anonymizer examples folder

� example-files . Files processing example folder

� example-buffers . Buffers processing example folder

� hasp . license management software folder

� documentation . SDK documentation folder

� 3rdparty-licenses . Licenses of used 3rd party backend libraries

� data .Example data folder

� tools Folder with utilities for GPU devices listing, TensorRT model conversion

� LICENSE.txt . SDK license

� RELEASE_NOTES.txt .file with release notes for each SDK version

� README.txt .SDK readme file

Eyedea Recogniton, s.r.o.

Installation Guide 6

3 Installation Guide
Installation of the software licensing daemon is the first step to start using the Anonymzier. The library

comes equipped with a standard third-party software licensing solution, Sentinel LDK by Thales. This chap-

ter will guide the client through installation on Windows and Linux. In the process, the client will install a

daemon service, Sentinel License Manager, that will automatically start upon system startup. The appli-

cation enables execution of the encrypted Anonymzier binaries, and management of licenses using a web

browser.

3.1 Pre-installation
Prior to the installation of the licensing software, all Sentinel Hardware Keys should be removed from the

target computer based on the recommendation from Thales. Leaving it connected during the installation

process might cause the Sentinel Hardware Key to not be properly recognized by the new installation of

Sentinel License Manager.

Sentinel License Manager does not support read only filesystems (on Windows, the functionality is called

Enhanced Write Filter).

3.2 Sentinel LDK Installation

3.2.1 Windows
Follow these steps to install Sentinel License Manager on a Windows machine:

• Start the command line “cmd” with Administrator privileges.

• Navigate to the [sdk]/hasp/ directory.

• Execute “dunst.bat” to uninstall any previous versions of Sentinel License Manager.

• Execute “dinst.bat” to install Sentinel License Manager.

3.2.2 Linux
Follow these steps to install Sentinel License Manager on a Linux machine:

• Start the command line and navigate to the [sdk]/hasp/ directory.

• On 64-bit Linux distributions, install the 32-bit compatibility binaries.

– On Ubuntu 18.04 and higher: Execute “sudo apt-get install libc6:i386”.

• Execute “sudo ./dunst” to uninstall any previous versions of Sentinel License Manager.

• Execute “sudo ./dinst” to install Sentinel License Manager.

– Without compatibility binaries, error “No such file or directory.” might appear.

3.3 Verification of Installation
The software licensing daemon contains a web-based interface, which also allows the client to check the

available licenses. To verify that the installation of Sentinel License Manager was successfully completed,

the client should open a web browser at http://localhost:1947/_int_/devices.html. The web page will be

displayed, as seen in the image below. The client must check that the trial licenses were installed properly,

and that the Anonymzierworks on themachine, before ordering a full license. If not, a problemmay arise in

the future when connecting the full license, resulting in a licensing failure and additional costs to relicense

the software to another machine. The web page lists all available license keys. Under the “Products” link

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/devices.html

Installation Guide 7

in the left pane all available products are listed.

Sentinel License Manager screenshot.

3.4 Installation Failures
OnWindows, antivirus application might break the installation of Sentinel License Manager. If the installa-

tion failed, the client should disable the antivirus application and rerun the installation of Sentinel License

Manager. Even after successful installation, Sentinel License Manager might fail to show up in the web

browser. This can be solved by adding

C:\Windows\system32\hasplms.exe

to the exception list of the antivirus. Port number 1947 must be also added to the exception list of the

Windows firewall, and also to the antivirus exception list, if it uses its own firewall.

3.5 Managing Licenses
It is of the utmost importance that the client understands the licensing schemes used in the Thales Sen-

tinel LDK software protection framework. Otherwise, unrepairable damage might be caused, leading to

additional costs to recover the already purchased licensing keys. The topic of license management is fully

covered in the chapter Anonymzier Licensing.

Eyedea Recogniton, s.r.o.

Installation Guide 8

3.6 License Error Codes
Error codes are outputted to the error stream of the application (typically stderr) using Anonymzier. The

user needs to check the error stream for error codes and fix the issues before deployment. The following

error codes and messages are the most common ones:

• H0007 – Sentinel HASP key not found. (No license for the Anonymzier on the PC.)

• H0033 – Unable to access Sentinel HASP Runtime Environment. (No License Manager found.)

• H0041 – Feature has expired. (The license on the PC has expired, consider renewal.)

The shared library of Anonymzier is encrypted for enhanced software protection. However, in case of

failure, the application does not terminate, but crashes after a few calls to the library; this is a security

measure against reverse engineering but may confuse the users. The client needs to make sure they moni-

tor the error codes outputted by the error stream to distinguish between programming errors and licensing

problems.

3.7 TensorRT
The Anonymzier can use TensorRT to run detection and OCR models, SDK package contains data files and

command-line utility which can be used to generate TensorRT model for specific target device.

3.7.1 TensorRT Anonymzier Models
For Nvidia Jetson devices, when TensorRT GPU mode is set, the classifiers cannot be prepared in advance

and the folder

[AnonymizerSDK]/sdk/models

does not include prebuilt .dat files, but only their prototypes. Before running the software for the first time

on a specific Nvidia Jetson device type, the .dat files must be created using an utility called edftrt_dat_en-

coder which should be located in the tools directory. For example, if the client has 100 identical devices,

they only need to follow this process once and then share the created .dat files among the devices.

To run the edftrt_dat_encoder utility, the client needs to make sure the relevant Nvidia TensorRT libraries

are visible in the system, which can be checked using ldd utility as “ldd edftrt_dat_encoder”. If not found,

the Nvidia TensorRT need to be added to the library path using the following command:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/aarch64-linux-gnu/

The edftrt_dat_encoder utility must be executed when there is no other process utilizing resources on

the target device, otherwise the created .dat files will not give the best possible performance. By de-

fault, the generated .dat files use float32 (FP32) computation mode. Using float16 (FP16) computation

mode can improve speed, but the effect on accuracy needs to be verified. Use parameter “-h” with the

edftrt_dat_encoder utility to see all options, run the utility without any options to use defaults. Conver-

sion can take about 30 minutes depending on the specific device type. Warnings might appear during the

generation which can be ignored.

Eyedea Recogniton, s.r.o.

Installation Guide 9

3.7.2 Generating Device Specific Models
Here is an example of a command that can be used from inside the models directory:

./edftrt_dat_encoder -p=./ -w=2048 -q=FP16

The “-p” argument denotes the path in which the utility will look for model prototypes (file triples with

extensions .dat.pre, .dat.net, .dat.post) tomake optimized .dat files from, “-q” sets the quantization, and “-

w” sets the workspace size - see the official NVIDIA TensorRT documentation (docs.nvidia.com/deeplearn-

ing/tensorrt/api/c_api/) for the function IBuilderConfig::setMaxWorkspaceSize formore informationabout

this parameter.

3.7.3 Known Issues
As of Nvidia TensorRT 8.2, there are still documented known issues in Nvidia TensorRT library that can

cause the generated .dat files to lose accuracy or completely misbehave. It is up to the customer to verify

the newly created .dat files give expected performance, for example by comparing with the results of

Anonymzier CPU version.

3.8 OpenGL Prerequisites
ForNvidia Jetson devices, we also provide Anonymzierwith Tensorflow Lite backend, which utilizesOpenGL

for GPU processing. To be able to use GPU, the Jetson SD card image must be installed with nvidia-l4t-3d-

core package, described as “NVIDIA GL EGL Package”. This package is installed during the default instal-

lation of Nvidia JetPack. When using a remote shell to connect to a device where the client wants to be

using OpenGL GPU mode, X forwarding must be turned off.

Eyedea Recogniton, s.r.o.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/

SDK Application Interface 10

4 SDK Application Interface
This chapter describes all parts of the SDK’s public application interface for the C/C++ programming lan-

guages, including the defined Structures and all available Functions. It gives the developer a detailed

overview of the SDK and can help orientate the developer during SDK integration.

4.1 Structures
Document section Structures covers all the information about structures used in the SDK’s public appli-

cation interface. Structure ERoI is used to define image area, AnParams is used to store anonymization

parameters, AnBuffer is used to enclose buffers data and ANState is used as Anonymizer engine handle.

ANState

typedef void* ANState;

Type ANState is used as a handle to Anonymizer SDK library.

AnBuffer

typedef struct {
unsigned char* raw_data;
size_t length;

} AnBuffer;

Structure AnBuffer is used to enclose image buffer. The structure contains following fields:

• raw_data

Byte array of data (raw image BGR data, JPEG encoded data).

• length

Length of buffer in bytes.

AnDetectionParams

typedef struct {
float threshold;
int min_length;
int max_length;
float blur_size_factor;
int blur_num_passes;

} AnDetectionParams;

AnDetectionParams are control parameters to select/filter objects to be annonymized. Anonymization area

and anonymization degree is controled by blur_size_factor and blur_num_passes. The structure

contains the following fields:

• threshold

Detection threshold to balance between recognition of objects and amount of false positive detec-

tions. Default value is 0.0

• min_length

minimal length of the detected object to be accepted in pixels. Default value is 0

• max_length

maximal length of the detected object to be accepted in pixels. Default value is INT_MAX
• blur_size_factor

Parameter to enlarge anonymized area (< 1.0 - smaller than detection, ==1.0 - exactly as detection;

Eyedea Recogniton, s.r.o.

SDK Application Interface 11

>1.0 - larger than detection). Default value is 1.0

• blur_num_passes

Number of blur passes over the detection. Default value is 1

AnObjectType

enum AnObjectType{
AN_FACE = 0,
AN_LP,
AN_NUM_OBJECT_TYPES

};

AnObjectType is an enumerationof objects to anonymize. It is used for setting and accessing anonymization

parameters of objects (see AnDetectionParams) in the anonymization parameters AnParams.

AnParams

typedef struct
{

ERRoI roi;
int mode;
int show;
int jpeg_quality;
int keep_exif;
int panoramic;
int verbose;
int num_object_types;
AnDetectionParams object_params[AN_NUM_OBJECT_TYPES];

} AnParams;

AnParams is a set of parameters controling anonymization process. AnParams enables to define param-

eters in runtime like ROI definition, anonymized object type, output image quality etc. For visualisation

purposes the show flag is used. Detections are then highlighted insted of blurred. The structure contains

the following fields:

• roi

Region of interest - the area scanned for detections, default area is full image (defined as ERoI{.x=0,

.y=0, .width=-1, .height=-1})

• mode

Flag indicatingwhether to anonymize faces or license plates or both. Default value isANONYMIZE_FACE
| ANONYMIZE_LP (both faces and license plates are anonymized).

• show

Debugging flag indicating, that detections will be highlighted instead of blurred.

• jpeg_quality

Output image JPEG quality 0..100, default value is 90.

• keep_exif

Copy EXIF and other non-image information from original file or JPG buffer to output file or JPG

buffer. This option does nothing when file is not JPG or when used for image buffer anonymization.

Note that EXIF image thumbnail is NOT anonymized and that this may not work on nonstandard

EXIFs. Default value is 0.

• panoramic

Enable copying of left and right borders to detect objects on the edges of panoramic photos. Default

value is 0.

• verbose

Enables logging of anonymization progress on to stdout. Default value is 0

• num_object_types

Eyedea Recogniton, s.r.o.

SDK Application Interface 12

Arrat size of object_params see AnObjectType

• object_params

Array of annonymization parameters indexed using AnObjectType, see AnDetectionParams

AnDetectionParams::blur_size_factor=1.0 AnDetectionParams::blur_size_factor=1.5

A
n
P
a
ra
m
s:
:s
h
o
w
=
1

A
n
P
a
ra
m
s:
:s
h
o
w
=
0

Comparison of normal blurring vs. showing detections in red and comparison of different sizes of blurring

regions

blur_num_passes=1 blur_num_passes=2 blur_num_passes=3

Comparison of different blur strength

Eyedea Recogniton, s.r.o.

SDK Application Interface 13

4.2 Functions
This chapter contains the definition of the Anonymizer library functionswhich are present in the public API.

The chapter is divided into three parts. First part describes function for manipulation with Anonymizer

engine, second part describes functions for image anonymization and third section describes all other

functions.

4.2.1 Engine manipulation functions
This part defines theAPI functionswhich are designed to initialize Anonymizer engine and to freeAnonymizer

engine as well as to get engine version. The functions are: anInit(), anFree() and anVersion(). These func-

tions are defined in the Anonymizer.h file.

anInit

Initializes the Anonymizer engine and loads and set-ups all detection modules.

Specification:

int anInit(const char* sdk_directory, const char* ini_filename, ANState* state)

Inputs:

• sdk_directory

Path of the AnonymizerSDK directory.

• ini_filename

Config file name (if NULL, default ”config.ini” is used).

Outputs:

• state

Pointer to ANState type.

Returns:

• 0 on success, non-zero value otherwise

Description:

The function anInit() initializes Anonymizer engine and loads detection modules for face detection and

license plates detection and load their configuration files. Input parameters are path to AnonymizerSDK

directory where detection modules and configuration files are located and filename of main config. Func-

tion returns zero on success or error code if it fails.

Example:

ANState state;
// Anonymizer state handler
int ern;
if ((ern = anInit("../../AnonymizerSDK/", "config.ini", &state)) != 0)
{

// error handling
}

anFree

Frees initialized Anonymizer engine.

Specification:

void anFree(ANState state);

Eyedea Recogniton, s.r.o.

SDK Application Interface 14

Input:

• state

Pointer to the initialized Anonymizer engine instance created by anInit() function.

Description:

The function anFree() is used for freeing the Anonymizer engine. When the engine is not needed anymore,

for example at the end of the program, all underlying structures must be deallocated. The input of the

function call is the pointer ANState which was created using anInit() function during engine initialization.

IMPORTANT: Always free the Anonymizer engine when it is not needed anymore otherwise your pro-

gram will have memory leaks.

Example:

ANState state;
// Anonymizer state handler
anInit("../../AnonymizerSDK/", "config.ini", &state);
// Anonymizer init
// working with state
anFree(state);
// Free the Anonymizer state

anVersion

Returns the Anonymizer engine version.

Specification:

const char* anVersion(int verbose);

Input:

• verbose

Verbosity flag. If enabled, function will return more information about SDK.

Returns:

• Anonymizer engine version.

Description:

The function anVersion() returns string with version of Anonymizer engine e. g. ”Anonymizer v5.0.0.8694”

Example:

printf("Version: %s\n\n", anVersion(0));
// print Anonymizer version

4.2.2 Anonymization functions
This part defines the API functions which are designed to anonymize images. Function anAnonymize()

anonymizes image files defined by its filename, function anAnonymizeImageBuffer() anonymizes raw im-

age data supplied in buffer and anAnonymizeJpegBuffer() anonymize JPEG encoded image data supplied

in buffer. Function anFreeBuffer() frees previously allocated buffer and function anGetDefaultParams() re-

turns default anonymization parameters values of AnParams structure. These functions are defined in the

Anonymizer.h file.

anAnonymize

Loads image file, runs anonymization and save result as JPEG file.

Specification:

Eyedea Recogniton, s.r.o.

SDK Application Interface 15

int anAnonymize(const char* src_image_filename, const char* dst_image_filename,
AnParams* params, ANState state);

Inputs:

• src_image_filename

Input image filename. Anonzmizer can load JPG, PNG, TIF and BMP files.

• dst_image_filename

Output image filename (in JPEG format).

• params

Pointer to AnParams structure with Anonymization parameters. Use NULL for default parameters.

• state

ANState Anonymizer state.

Returns:

• 0 on success, error code otherwise.

Description:

The functionanAnonymize() loads imagefile specifiedbysrc_image_filenameparameter, run anonymiza-

tion with parameters specified by AnParams params and save the anonymized image as JPEG file specified

by dst_image_filename.

Example:

if (anAnonymize("image.jpg", "image_anonymized.jpg", NULL, state)!=0)
{

// error handling
}

anAnonymizeImageBuffer

Runs Anonymization on raw image buffer and outputs result as raw image buffer.

Specification:

int anAnonymizeImageBuffer(AnBuffer src_buffer, unsigned int width, unsigned int height,
AnParams* params, ANState state, AnBuffer*

dst_buffer);

Inputs:

• src_buffer

Input structure with BGR data buffer, row-wise, 3 bytes (unsigned chars) per pixel, index = 3*col +

row*3*width.

• width

Image width.

• height

Image height.

• params

Pointer to AnParams structure with Anonymization parameters. Use NULL for default parameters.

• state

ANState Anonymizer state.

Output:

• dst_buffer

Anonymized image in data buffer (BGR).

Eyedea Recogniton, s.r.o.

SDK Application Interface 16

Returns:

• 0 on success, error code otherwise.

Description:

The function anAnonymizeImageBuffer() runs anonymization on raw BGR image data supplied in buffer

aligned row by row and returns result in buffer with same format. Output buffer dst_buffer must be

freed when it is no longer needed. See Anonymizer Example – buffers for more information.

Example:

AnBuffer src_buffer, dst_buffer;
// input and output buffers
// fill src_buffer with some image data
if (fcnAnAnonymizeImageBuffer(src_buffer, img_width, img_height, NULL, state, &dst_buffer) != 0)
{

// error handling
}

IMPORTANT: Always free dst_buffer structure with result when it is not needed anymore using

anFreeBuffer() function otherwise your program will have memory leaks.

anAnonymizeJpegBuffer

Runs Anonymization on JPEG image buffer and outputs result as JPEG image buffer.

Specification:

int anAnonymizeJpegBuffer(AnBuffer src_buffer, AnParams* params, ANState state, AnBuffer*
dst_buffer);

Inputs:

• src_buffer

Input structure with JPEG encoded data buffer.

• params

Pointer to AnParams structure with Anonymization parameters. Use NULL for default parameters.

• state

ANState Anonymizer state.

Output:

• dst_buffer

Anonymized image in JPEG data buffer.

Returns:

• 0 on success, error code otherwise.

Description:

The function anAnonymizeImageBuffer() runs anonymization on JPEG image data (JPEG encoded data) sup-

plied in buffer and returns result in dst_buffer JPEG buffer. The dst_buffer must be freed when it is

no longer needed. See Anonymizer Example – bufferss for more information. n.

Example:

AnBuffer src_buffer, dst_buffer;
// input and output buffers
// fill src_buffer with some image data
if (ern=anAnonymizeJpegBuffer(src_buffer, NULL, state, &dst_buffer) != 0)
{

// error handling
}

Eyedea Recogniton, s.r.o.

SDK Application Interface 17

IMPORTANT: Always free dst_buffer structure with result when it is not needed anymore using

anFreeBuffer() function otherwise your program will have memory leaks.

anFreeBuffer

Frees the image buffer filled by Anonymizer SDK functions.

Specification:

void anFreeBuffer(AnBuffer buffer);

Input:

• buffer

AnBuffer structure to free.

Description:

The function anFreeBufferanFreeBuffer() frees data buffer previously allocated by anAnonymizeImage-

Buffer() or anAnonymizeJpegBuffer() function.

Example:

anFreeBuffer(dstBuffer); // free buffer allocated by Anonymizer

anGetDefaultParams

Fills AnParams structure with default values.

Specification:

int anGetDefaultParams(AnParams* parameters);

Output:

• parameters

Pointer to AnParams structure.

Description:

The function anGetDefaultParams() fills AnParams structure with default values. Pass pointer to statically

or dynamically allocated AnParams structure to be filled with default values.

Example:

AnParams params;
fcnAnGetDefaultParams(¶ms);

4.2.3 Other functions
This part defines other API functions. Function anGetErrorMsg() is used to get error message for error

code. Function anPlotLayouts() serves as helping function to for better setup of detection paramerers.

These functions are defined in the Anonymizer.h file.

anGetErrorMsg

Gets a message string related to the given error code.

Specification:

const char* anGetErrorMsg(int ern);

Eyedea Recogniton, s.r.o.

SDK Application Interface 18

Input:

• ern

An error code of the message to be retrieved.

Returns:

•

The null-terminated string containing the error message.

Description:

The function anGetErrorMsg() returns an error message of the error specified by error code.

Example:

int erno; // variable to save return value
// run some function and save return value to erno
if(erno != 0)
{

printf("Function failed: %s\n", anGetErrorMsg(erno)); // Print error message
}

anPlotLayouts

Save image(s) with current tiles’ layout(s) for detection of given type.

Specification:

int anPlotLayouts(ANState state, const char* image_path, AnObjectType type);

Input:

• state

ANState Anonymizer state.

• image_path

The path to the image, the tiles will be plotted on.

• type

AnObjectType object detector type, whose detection layouts will plotted.

Returns:

• 0 on success, error code otherwise.

Description:

Object detection using convolutional nerual networks is limited by the architecture of the network (by

the fixed input image size to the network). To process large images (e.g. street-view images) the image

should be splitted to ”tiles” which are processed by the network independently. How the tiles are aranged

is defined by layouts. Layouts are genereated based on parameters or manually defined in .ini files of de-

tectors. The function anPlotLayouts() serves for better setup of layouts/layouts’ parameters. The function

plots tiles to the input image as colored rectanles. The images with tiles are saved to the current working

directory with name preffix defined by AnObjectType and by the layout setup.

Example:

// given initialized ANState state and path to image, the function will generate image(s) with
tile layouts for face detection.

anPlotLayouts(state, image_path, AnObjectType::AN_FACE);

Eyedea Recogniton, s.r.o.

Examples 19

5 Examples
This chapter contains description of examples which are contained in the SDK package. Examples are used

to demonstrate the functionality of the SDK, the source codes are included in the package and are in de-

tail described in this chapter. First example demonstrates how to anonymize image files directly. Second

example demonstrates how to anonymize images when you already have image data in memory either

encoded in JPEG or as raw BGR data.

5.1 Anonymizer Example – files
This basic example demonstrates how to useAnonymizer SDK to anonymize imagefiles directly fromfilesys-

tem and write result back to filesystem. File reading and writing is handled by Anonymizer SDK. The ex-

ample is in the folder [Anonymizer_SDK]/examples/example-files/. The folder contains all needed source

codes and files for successful build. In case of Windows, Visual Studio project is included, in case of Linux

Makefile is included.

5.1.1 Initialization of Anonymizer engine
First thing to do is the Anonymizer engine initialization using the anInit() function. Parameters of this

function are directory where AnonzmizerSDK modules are located (e. g. ../../AnonymizerSDK for default

package directory structure) and name of main configuration file (or NULL for default config.ini file).

Almost all API functions has integer return value and returns 0 on success or error code. To see the error

message use a anGetErrorMsg() function. More verbose error logs are printed to stderr.

#define ANONYMIZER_SDK_DIR "../../AnonymizerSDK/"
// define path to AnonymizerSDK
#define ANONYMIZER_INI "config.ini"
// define filename of main config
ANState state;
// Anonymizer state handler
int ern;
if ((ern = anInit((char*)ANONYMIZER_SDK_DIR, (char*)ANONYMIZER_INI, &state)) != 0)
{

// error handling
};

After successful initialization of engine, anonymization functions can be used.

5.1.2 Setting anonymization parameters
The anonymization parameters are set using AnParams structure. Example of AnParams initialization:

AnParams parameters;

parameters.roi = ERRoI{0,0,-1,-1}; /* Region Of Interest (detection area) see ERRoI */
parameters.mode = ANONYMIZE_FACE | ANONYMIZE_LP; /* anonymize faces and licence plates */
parameters.jpeg_quality = 90; /* output JPEG file/buffer quality */
parameters.show = 0; /* if show>0 than the detections in ouput image are highlighted insted

of blurred */
parameters.panoramic = 0; /* set panoramic=1 if you have 360° panoramatic images to detect

objects on left and right edges */
parameters.keep_exif = 0; /* set keep_exif=1 to copy EXIF of processed JPG image NOTE that

thumbnail is not modified and that nonstandard EXIFs are not preserved. Works only for JPG
files or JPG buffers. */

parameters.verbose = 0; /* if verbose >0 than Anonymizer engine prints to the stdout the
progress state */

/* The face detection and blurr parameters */

Eyedea Recogniton, s.r.o.

Examples 20

parameters.face.threshold = 0.; /* detection threshold to balance between recognition of
objects and amount of false positive detections */

parameters.face.min_length = 0; /* minimal length of the detected object to be accepted
in pixels */

parameters.face.max_length = INT_MAX; /* maximal length of the detected object to be accepted
in pixels */

parameters.face.blur_size_factor = 1.; /* factor to enlarge anonymized area with respect to size
of detection */

parameters.face.blur_num_passes = 1; /* number of blurr passes over anonymized area */

/* The license plate detection and blurr parameters */
parameters.lp.threshold = 0.;
parameters.lp.min_length = 0;
parameters.lp.max_length = INT_MAX;
parameters.lp.blur_size_factor = 1.;
parameters.lp.blur_num_passes = 1;

The parameter.roi defines Region Of Interest where the anonymization is applied.

Parameters parameter.face.threshold and parameter.lp.threshold define detection thresholds

for face and license plate detection, respectively. The lower values result in more detections together with

more false positives. The higher values decrease number of false positives and increase number of false

negative. The value range is <0,1>.

Parameters parameter.face.blur_size_factor and parameter.lp.blur_size_factor define the

size of the blurred area with respect to the size of detected object. Values below 1 decrease the area size,

values above 1 increase the area size (see table 1 in description of AnParams structure).

Parameters parameter.face.blur_num_passes and parameter.lp.blur_num_passes denote num-

ber of blurring passes over the detected object, i.e. they determine the blurring strength (see table 2 in

description of AnParams structure).

The parameter.show flag is used highlighted detections for testing purposes (see table 1 in description

of AnParams structure).

The parameter.verbose flag switches on/off progress information to the stdout.

The parameter.panoramic flag switches on/off copying of left and right edges of images which is useful

for anonymizing of 360 degrees panoramic images where image on the left edge continues at right side of

image. Depending on other parameters, this setting increase processing time by about 5-10

The parameter.keep_exif flag can be used for JPG files or buffers to copy EXIF data from source to

output file/JPG buffer. Note that EXIF thumbnail is NOT anonymized. May not work on nonstandard EXIFs.

5.1.3 Image anonymization
To anonymize image located on drive function anAnonymize() is used. Parameters are input and output

image filenames, anonymization parameters and Anonymizer state. Input file can be JPG, PNG, BMP or TIF

file, output file is in JPG format.

string input = "../../data/image.jpg";
string output = "image_anonymized.jpg";
// run anonymization - if anonymization parameters are NULL, default values are used
if (anAnonymize((char*)input.c_str(), (char*)output.c_str(), parameters, state)!=0)
{

// error handling
}

Eyedea Recogniton, s.r.o.

Examples 21

5.1.4 Cleaning up
At the end, when theworkwith theAnonymizer instance is finished (for example at the endof the program),

it must be freed. To free Anonymizer, use the API function anFree(), which is designed for such purpose.

anFree(state);
// Free the Anonymizer state

5.2 Anonymizer Example – buffers
This basic example demonstrates how to use Anonymizer SDK to anonymize images in buffers. This can be

useful when data are already in memory. Anonymizer can process raw images data in BGR format or JPEG

encoded data.

The example is in the folder [Anonymizer_SDK]/examples/example-buffers/. The folder contains all needed

source codes and files for successful build. In case of Windows, Visual Studio project is included, in case of

Linux Makefile is included. version.

5.2.1 Initialization of Anonymizer Engine

5.2.2 JPEG buffer anonymization
To anonymize buffer with JPEG encoded image, function anAnonymizeJpegBuffer() is used. Parameters are

input and output buffers, anonymization parameters and Anonymizer state. Functions fread_buffer()
and fwrite_buffer() are simple functions to read and write binary files. Codes of these functions are

included in file example-buffers.cpp.

// Anonymization of JPEG buffer
string input = "../../data/image.jpg";
string output = "image_anonymized.jpg";
AnBuffer srcBuffer, dstBuffer;
if (fread_buffer((char*)input.c_str(), &(srcBuffer.raw_data), &(srcBuffer.length)) != 0)
{

// error handling
}
if (ern=fcnAnAnonymizeJpegBuffer(srcBuffer, NULL, state, &dstBuffer) != 0)
{

// error handling
}
if (fwrite_buffer((char*)((output + ".JpegBuffer.jpg").c_str()), dstBuffer.raw_data,
dstBuffer.length) != 0)
{

// error handling
}
delete [] srcBuffer.raw_data;
fcnAnFreeBuffer(dstBuffer);

5.2.3 Image buffer anonymization
To anonymize buffer with raw BGR image, function anAnonymizeJpegBuffer() is used. Parameters are input

and output buffers, image width and height, anonymization parameters and Anonymizer state. OpenCV

library is used in this example for image reading and writing.

IMPORTANT: The example implicitly suppose, that returned opencv image has continous image data

buffer! This should be checked with cv::Mat::isContinuous() function.

// anonymization of image buffer
string input = "../../data/image.jpg";

Eyedea Recogniton, s.r.o.

Examples 22

string output = "image_anonymized.jpg";
cv::Mat imageBGR, imageAnonymized;
imageBGR = cv::imread(input.c_str(), cv::IMREAD_COLOR); // Read the file - BGR order
srcBuffer.raw_data = imageBGR.data;
unsigned char* anonymizedBuffer = NULL; // anonymized buffer - ouptut of anonymization
cv::Size s = imageBGR.size();
if (fcnAnAnonymizeImageBuffer(srcBuffer, s.width,s.height, NULL, state, &dstBuffer) != 0)
{

// error handling
}
memcpy(imageBGR.data, dstBuffer.raw_data, imageBGR.total()*imageBGR.elemSize());// set anonymized
data back to BGR image
cv::imwrite(output + ".Buffer.jpg", imageBGR); // and write
fcnAnFreeBuffer(dstBuffer); // free buffer allocated by Anonymizer

5.2.4 Cleaning up

Eyedea Recogniton, s.r.o.

Anonymizer command line interface 23

6 Anonymizer command line interface
Anonymizer SDK package contains anonymizer-cli application for batch anonymization of images located

at [Anonymizer_SDK]/applications/anonymizer-cli. This command-line application uses simple interface,

user sets input list of images to be processed, and output directory for anonymized images. Optional

parameters are JPEG output quality, mode to visualize detections instead of blurring, possibility to blur

only registration plates or only faces and possibility to anonymize only selected area of images as well as

few other options to control blurring parameters.

Usage of anonymizer-cli:

Linux:

./anonymizer-cli [options] image_list

Windows:

anonymizer-cli.exe [options] image_list

Options:

-h, --help this help
-o=directory, --output=directory

sets the output directory for anonymized images (default 'anonymized')
-q=n, --quality=n

sets jpeg quality n = 1..100 (0 default)
--keep-exif

Copy EXIF from original JPG file to output file.
NOTE that EXIF thumbnail is not anonymized and that some nonstandard EXIFs may not be

preserved.
You may regenerate JPG thumbnails with some suitable tool after anonymization (jhead,

exiftran).
--no-lp don not run LP anonymization
--no-face don not run FACE anonymization
--cpu override coputation mode to cpu
--gpu override computation mode to gpu
--gpu-id=ID use gpu with given ID for gpu computation
--num-threads=X number of threads for CPU computation parts
--roi=[x,y,width,height]

anonymization ROI (region of interest) negative value of width/height represents full
dimension of image

default, [0 0 -1 -1]
--show colorize detections insted of blurring them
--panoramic

copy left and right edges of panoramatic images to be able to detect on edges of 360
degree images

not active with ROI which is not full width of image
-v, --verbose

more verbose run.

--lp-thr=threshold
sets the threshold on LP detections (default 1.000000)

--lp-min-length=value sets the length filter, the minimal length of the lp to be accepted
(default 832)

--lp-max-length=value sets the length filter, the maximal length of the lp to be accepted
(default 0)

--lp-num-blur-pass=n sets licence plates blur amount (default 832)
--lp-size-factor=r sets size of blured area relative to lps detection size (default

0.000000)

--face-thr=threshold sets the threshold on face detections (default nan)
--face-min-length=value sets the length filter, the minimal size of the face to be accepted

(default 1065353216)
--face-max-length=value sets the length filter, the maximal size of the face to be accepted

(default 1)
--face-num-blur-pass=n sets faces blur amount (default 0)

Eyedea Recogniton, s.r.o.

Anonymizer command line interface 24

--face-size-factor=r sets size of blured area relative to faces detection size (default
0.000000)

--plot-layouts
plot colorized tiles into image based on layouts used detected object. For each object

used layouts are plotted.
Expected image filename as an input!

Examples (Linux):

./anonymizer-cli -o=output_dir image_list.txt

This command will anonymize both license plates and faces in images in image_list.txt and writes them to

directory output_dir.

./anonymizer-cli -o=o_dir –face --face-thr=0.8 image_list.txt

This command will anonymize only faces with score above 0.8 in images in image_list.txt and writes them

to directory o_dir.

Where image_list.txt is text file with paths to image files to be processed, one file per line. Filepaths can be

absolute or relative to anonymizer binary. Scriptmake_imagelist is included in directory of anonymizer-cli.

Example of image list can be:

/local/data/images/DSC_5243.jpg
/local/data/images/DSC_5244.jpg
/local/data/images/DSC_5245.jpg

./anonymizer-cli --plot-layouts DSC_5243.jpg

This command will produce images named by anonymized object and currently used layouts to generate

detector’s input tiles. The tiles are displayed in the input image (DSC_5243) as colored rectangles.

Eyedea Recogniton, s.r.o.

Anonymzier Licensing 25

7 Anonymzier Licensing
Anonymzier uses the third-party framework developedby Thales for software protection and licensing. The

SDK is protected against reverse engineering and unlicensed execution using hardware USB keys. The SDK

can not be used without a USB license key with a valid license except in tral version, which uses software

key instead.

7.1 License Key Types
The SDK allows loading a license using various hardware key types which are listed in the following table.

The keys differ by the number of licenses they can contain (Pro andMax versions), by physical dimensions,

ability to contain time-limited licenses (Time versions) and ability to distribute licenses over the network

(Net versions).

SKU Product SKU Product

SH-PRO Sentinel HL Pro SH-BRD
Sentinel HL Max

(Board form factor)

SH-MAX Sentinel HL Max SH-TIM Sentinel HL Time

SH-MIC
Sentinel HL Max

(Micro form factor)
SH-NET Sentinel HL Net

SH-CHP
Sentinel HL Max

(Chip form factor)
SH-NTT Sentinel HL NetTime

7.2 Licenses Overview
Several licenses are available for the Anonymzier. The licenses differ in the type of the binary models

which can be loaded, the time period for which the license is valid, and the number of allowed function

executions.

7.2.1 Perpetual License
A perpetual license is the least restrictive license available. It allows the user to use the license in specified

number of instances for unlimited time and unlimited number of executions. This license type is used for

products which will be deployed to the end-user.

7.2.2 Time-Limited License
A time-limited license allows to set a restriction on the time for which the license is valid. The license

validity end date or the number of the days for which the license is valid after the first use can be set. This

Eyedea Recogniton, s.r.o.

Anonymzier Licensing 26

license can be set on Time keys only (see License Key Types). This type of license is used mainly in the

Developer package.

7.2.3 Execution Counting
An execution counting license allows counting the number of times the license was logged in. The SDK is

designed in such a way that it logs in the license every time a specified SDK function is called. It allows

limiting the number of executions with the license. This type of license is used mainly in the Developer

package.

7.3 License Management
The license protection software provides a web interface for license management. The web interface can

be found on the address http://localhost:1947 opened in the common web browser. It allows the user to

list the connected license keys, see the details of the arbitrary license key, update the license, and several

other functions.

7.3.1 Connected License Keys
The list of license keys currently plugged in the computer is available at http://localhost:1947/_int_/de-

vices.html. The list contains basic information about each key, including the location of the key (Local or

IP/name of the remote machine), Vendor ID, Key ID, Key Type, Configuration, Version and the number of

connected Sessions. For each key, it is possible to list the contained license products, features and sessions

using the buttons Products, Features and Sessions. For easy identification, the USB key LED can be blinked

using the Blink On button in the Actions column. The unique key identification file can be downloaded

using the C2V button.

Web interface with list of plugged keys on http://localhost:1947/_int_/devices.html

7.3.2 License Key Details
Detailed information about a key can be acquired by clicking on the Features button in the Connected

License Keys list or at http://localhost:1947/_int_/features.html?haspid=KEYID, where the KEYID is the ID

Eyedea Recogniton, s.r.o.

http://localhost:1947
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/features.html?haspid=KEYID

Anonymzier Licensing 27

of the key. The web page contains information about the licenses contained on the key. The set of all

the features represents the whole license. Each Feature controls a different part of the SDK workflow

(initialization, binary model selection, descriptor computation, …).

Web interface with key 517285691

details on http://localhost:1947/_int_/features.html?haspid=517285691

7.4 License Update
The license can be updated using a special *.v2c file, which is emitted by the licensor of the software. The

license update file is generated for a specific license key ID and only that key can be updated using the file.

There are two ways of updating the license: Web Interface and Command Line.

The license update must be done on the computer where the protection software supplied with the SDK

package is installed. For more information about the protection software installation see the chapter In-

stallation Guide.

IMPORTANT: The hardware protection key dongle with the license to be updated needs to be con-

nected to the machine where the license update will be applied.

7.4.1 Web Interface
The first option allows the user to update the license using the web interface of the license management

software Sentinel Admin Control Center. The web interface which can be opened in all modern browsers

is located at http://localhost:1947/_int_/checkin.html.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/features.html?haspid=517285691
http://localhost:1947/_int_/checkin.html

Anonymzier Licensing 28

Web interface for license update on http://localhost:1947/_int_/checkin.html

How to update the license:

1. Open the link http://localhost:1947/_int_/checkin.html in the web browser.

2. Click on the Select File button and select the *.v2c file which you want to use for the update.

3. Click on the Apply File button.

4. A webpage with the result of the license update is shown.

7.4.2 Command Line
The secondmethod of updating the license is by using theWindows command line or a Linux console. This

approach can be very useful when applying the update remotely or on many devices. It is also suitable for

automating the license update procedure. This option requires basic knowledge of theWindows command

line or some Linux console. The license update file *.v2c is applied using the hasp_update utility from the

folder hasp/ located in the corresponding SDK package root.

Windows command line

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Linux console

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

./hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/checkin.html
http://localhost:1947/_int_/checkin.html

Third Party Software 29

8 Third Party Software
The LPM SDK uses third party software libraries in accordance with their licenses. The licenses can be

found under [LPMSDK]/documentation/3rdparty-licenses.

Here is a complete list of all libraries used, in alphabetical order:

• Iniparser

• OpenCL

• OpenCV

• OpenSSL

• TensorFlow Lite

• ZLib

The following statements are published to fulfill the license terms of the respective libraries:

“This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit

(http://www.openssl.org/).”

Eyedea Recogniton, s.r.o.

	Product Description
	Technical Details

	Distribution Contents
	Installation Guide
	Pre-installation
	Sentinel LDK Installation
	Windows
	Linux

	Verification of Installation
	Installation Failures
	Managing Licenses
	License Error Codes
	TensorRT
	TensorRT Anonymzier Models
	Generating Device Specific Models
	Known Issues

	OpenGL Prerequisites

	SDK Application Interface
	Structures
	ANState
	AnBuffer
	AnDetectionParams
	AnObjectType
	AnParams

	Functions
	Engine manipulation functions
	anInit
	anFree
	anVersion

	Anonymization functions
	anAnonymize
	anAnonymizeImageBuffer
	anAnonymizeJpegBuffer
	anFreeBuffer
	anGetDefaultParams

	Other functions
	anGetErrorMsg
	anPlotLayouts

	Examples
	Anonymizer Example – files
	Initialization of Anonymizer engine
	Setting anonymization parameters
	Image anonymization
	Cleaning up

	Anonymizer Example – buffers
	[an:Examples:InitializationAnonymizerEngine]Initialization of Anonymizer Engine
	JPEG buffer anonymization
	Image buffer anonymization
	[an:Examples:CleaningUp]Cleaning up

	Anonymizer command line interface
	Anonymzier Licensing
	License Key Types
	Licenses Overview
	Perpetual License
	Time-Limited License
	Execution Counting

	License Management
	Connected License Keys
	License Key Details

	License Update
	Web Interface
	Command Line
	Windows command line
	Linux console

	Third Party Software

