

Eyedea Recognition, s.r.o.

Anonymizer SDK
Developer's Guide

010001010111100101100101011001000110010101100001001000000

101001001100101011000110110111101100111011011100110100101

110100011010010110111101101110010001010111100101100101011

001000110010101100001001000000101001001100101011000110110

111101100111011011100110100101110100011010010110111101101

110010001010111100101100101011001000110010101100001001000

000101001001100101011000110110111101100111011011100110100

101110100011010010110111101101110010001010111100101100101

011001000110010101100001001000000101001001100101011000110

110111101100111011011100110100101110100011010010110111101

ADVANCED COMPUTER VISION SOLUTIONS

Version 6.x

Copyright © 2018, Eyedea Recognition s.r.o.

All rights reserved

Eyedea Recognition s.r.o. is not responsible for any damages or losses caused by incorrect
or inaccurate results or unauthorized use of the Anonymizer SDK software.

Gemalto, the Gemalto logo, are trademarks and service marks of Gemalto and are registered in certain
countries. Safenet, Sentinel, Sentinel Local License Manager and Sentinel Hardware Key are
registered trademarks of Safenet, Inc.

NVIDIA, CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or
other countries.

Microsoft Windows, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1,
Windows 10 and Visual Studio are registered trademarks of Microsoft Corporation.

Contact:

 Address:
 Eyedea Recognition, s.r.o.
 Vyšehradská 320/49
 128 00, Prague 2
 Czech Republic

 web: http://www.eyedea.cz

 email: info@eyedea.cz

http://www.eyedea.cz/

3

Eyedea Recognition, s.r.o.

Table of Contents
1 Product Description .. 4

1.1 Technical Details ... 4

2 Distribution Contents .. 5

3 Hardware Requirements ... 6

3.1 Minimal Requirements ... 6

3.2 Recommended Requirements .. 6

3.3 Supported Operating Systems .. 6

4 Installation Guide .. 7

4.1 Pre-installation .. 7

4.2 Installation .. 7

4.3 Verification of Installation ... 8

4.4 Installation Failures ... 8

4.5 Managing Licenses .. 8

4.6 License Error Codes ... 9

5 SDK Application Interface ... 10

5.1 Structures .. 10

5.2 Functions ... 14

6 Examples ... 21

6.1 Anonymizer Example – files .. 21

6.2 Anonymizer Example – buffers ... 24

7 Anonymizer command line application .. 26

8 Anonymizer SDK Licensing .. 27

8.1 License Key Types.. 27

8.2 Licenses Overview ... 27

8.3 License Management .. 28

8.4 License Update .. 30

9 Third Party Software ... 32

4

Eyedea Recognition, s.r.o.

1 Product Description

Anonymizer SDK is a cross-platform software library designed to provide easy anonymization of RGB

images. The software detects and blurs faces and/or car license plates in various scales and

orientations, with support for high resolution spherical images. Package includes command line

application for batch processing of images. Both one-line and two-lines license plates with EU size or

similar are supported (520x110mm, 280x200mm, 320x160mm and similar). Detection of other types

of license plates on request.

1.1 Technical Details
Anonymizer SDK consists of three parts – face detector, license plate detector and image blurring.

Face detector or license plate detector parts can each contain multiple detectors for better results for

example one detector for one-line plates and one for two-line plates. Areas found by detectors are

then seamlessly blurred or they can be highlighted for better visual inspection of results.

The Anonymizer library provides following APIs:

• C native API

Officially supported operating systems and platforms:

• Windows 7, 8, 8.1 and 10

o 64-bit (Visual Studio 2015)

• Ubuntu 16.04 and higher

o 64-bit

• Other platforms on request

C native API

User’s Code
C/C++

Anonymizer SDK

Face detector
License plates

detector

Image blurring

Example of anonymized image (left) and image with highlited detections for better inspection (right).

5

Eyedea Recognition, s.r.o.

2 Distribution Contents

The following list is an excerpt from the Anonymizer SDK directory structure, highlighting the most
important directories and files contained in the software distribution package. A brief description of
the items is given.

• [Anonymizer SDK]/ …………………………………………..………………………..… Distribution main folder

o AnonymizerSDK ……………………………………………………..……… Anonymizer engine folder

▪ include ………………………………………………………....…………. Anonymizer header files folder

▪ lib ….………………………………………………………………………..……. Anonymizer libraries folder

▪ models ….……………………………………………………..…. Anonymizer detectors models folder

o applications ……………………………………………………….……….… Anonymizer applications folder

▪ anonymizer-cmd …………………………….…………......... Batch processing application folder

o examples ………………………………………………………………………….. Anonymizer examples folder

▪ example-files ….……………………………………………………..... Files processing example folder

▪ example-buffers ….………………………………………………. Buffers processing example folder

o hasp ………………………………….………………..………………. License management software folder

o docs …………………………………………………….……..……………….………. SDK documentation folder

o data …………………………………………………….………..…………………………..…. Example data folder

o License.txt ……………………………………………………………………………..……………... SDK license file

o ReadMe.txt ………………………………………………..…………………………..…………… SDK readme file

o ReleaseNotes.txt ………………….…………………..………………………………… SDK release notes file

Distribution Contents 6

Eyedea Recognition, s.r.o.

3 Hardware Requirements

3.1 Minimal Requirements
Processor: 1.0 GHz, single core, x86 platform, embedded (i.e. Intel Atom)

RAM: 2 GB (depends on size of processed images)

Hard disk: 1 GB free space

3.2 Recommended Requirements
Processor: 2.0 GHz, dual core, x86 platform (i.e. Intel i5)

RAM: 4 GB (depends on size of processed images)

Hard disk: 2 GB free space

3.3 Supported Operating Systems

 Windows

• Microsoft Windows 7/8/8.1/10

 - x64 platform

 Linux

• Ubuntu 16.04 and higher

 - x86_64 platform

Installation Guide 7

Eyedea Recognition, s.r.o.

4 Installation Guide
Installation of software licensing daemon is the first step to start using Anonymizer SDK. The library

comes equipped with a standard third-party software licensing solution, Sentinel LDK by Gemalto.

This chapter will guide the client through installation on Windows and Linux. In the process, the client

will install a daemon service, Sentinel License Manager, that will automatically start upon system

startup. The application enables encrypted binaries of Anonymizer SDK to run, and to manage licenses

using a web browser.

4.1 Pre-installation
Prior to the installation of the licensing software, all Sentinel Hardware Keys should be removed from

the target computer based on the recommendation from Gemalto. Leaving it connected during the

installation process might cause the Sentinel Hardware Key to not be properly recognized by the new

installation of Sentinel License Manager.

The Sentinel License Manager does not support read only filesystems (on Windows, the functionality

is called Enhanced Write Filter).

4.2 Installation

 Windows

Follow these steps to install Sentinel License Manager on a Windows machine:

• Start the command line cmd with Administrator privileges.

• Navigate to [Anonymizer_SDK]/hasp/ directory.

• Execute "dunst.bat" to uninstall any previous versions of the Sentinel License Manager.

• Execute "dinst.bat" to install the Sentinel License Manager.

 Linux

Follow these steps to install Sentinel License Manager on a Linux machine:

• Start the command line and navigate to [Anonymizer_SDK]/hasp/ directory.

• On 64-bit Linux distributions, install the 32-bit compatibility binaries.

o On Ubuntu 14.04 and higher:

▪ Execute "sudo apt-get install libc6:i386".

• Execute "sudo ./dunst" to uninstall any previous versions of the Sentinel License Manager.

• Execute "sudo ./dinst" to install the Sentinel License Manager.

(Without compatibility binaries error “No such file or directory.” might appear.)

Installation Guide 8

Eyedea Recognition, s.r.o.

4.3 Verification of Installation
The software licensing daemon contains a web based interface, which also allows the client to check

the available licenses. To verify that the installation of Sentinel License Manager was successfully

completed, the client should open a web browser at http://localhost:1947/_int_/devices.html.

The web page will be displayed, as seen in Illustration 1. The client must check that the trial licenses

were installed properly, and Anonymizer SDK works on the machine before ordering a full license. If

not, a problem may arise in the future when connecting the full license, resulting in licensing failure

and additional costs to relicense the software to another machine. The web page lists all the available

license keys. Under the "Products" link in the left pane all available products are listed.

4.4 Installation Failures
On Windows, antivirus application might break the installation of Sentinel License Manager.

If the installation failed, the client should disable the antivirus application and rerun the installation

of Sentinel License Manager. Even after successful installation, the Sentinel License Manager might

fail to show up in the web browser. This can be solved by adding C:\Windows\system32\hasplms.exe

to the exception list of the antivirus. Port number 1947 must be also added to the exception list in the

Windows firewall and in the antivirus in case it uses its own firewall.

4.5 Managing Licenses
It is of the most importance that the client understands the licensing schemes used in Gemalto

Sentinel LDK software protection framework. Otherwise, unrepairable damage might be caused

leading to additional costs to recover the already purchased licensing keys. The topic of license

management is fully covered in the Chapter Anonymizer SDK Licensing.

Illustration 1: Sentinel License Manager screenshot.

http://localhost:1947/_int_/devices.html

Installation Guide 9

Eyedea Recognition, s.r.o.

4.6 License Error Codes
The error codes are outputted to error stream of the application (typically stderr) using

Anonzmizer SDK. The user needs to check the error stream for the error codes and fix the issues before

deployment. The following error codes and messages are the most common ones:

• H0007 – Sentinel HASP key not found. (No license for the Anonymizer SDK on the PC.)

• H0033 – Unable to access Sentinel HASP Runtime Environment. (No License Manager found.)

• H0041 – Feature has expired. (The license on the PC has expired, consider renewal.)

The shared library of Anonymizer SDK is encrypted for enhanced software protection. On the other

hand, on Linux systems, in case of failure the application does not terminate but crashes after a few

calls to the library, which is a security measure against reverse engineering but also causes confusion

of the users. The client need to make sure he monitors the error codes described in the standard error

to distinguish between programming errors and licensing problems.

SDK Application Interface 10

Eyedea Recognition, s.r.o.

5 SDK Application Interface
This chapter describes all the parts of the SDK’s public application interface for C/C++ programming

language including defined Structures and all available Functions. It gives developer detailed overview

of the SDK and helps to orientate during SDK integration.

5.1 Structures
Document section Structures covers all the information about structures used in the SDK’s public

application interface. Structure AnROI is used to define image area, AnParams is used to store

anonymization parameters, AnBuffer is used to enclose buffers data and AnState is used as

Anonymizer engine handle.

 AnState

Type AnState is used as a handle to Anonymizer SDK library.

 AnBuffer

Structure AnBuffer is used to enclose image buffer. The structure contains following fields:

• raw_data

Byte array of data (raw image BGR data, JPEG encoded data).

• length

Length of buffer in bytes.

typedef struct {

 unsigned char* raw_data;

 size_t length;

} AnBuffer;

typedef void* ANState;

SDK Application Interface 11

Eyedea Recognition, s.r.o.

 AnROI

AnROI (Region Of Interest) structure defines image area where anonymization is applied. The ROI is

defined by its top left point and width and height. The active pixels of regions are defined by closed

ranges <x,x+width-1>, <y,y+height-1>. The structure contains following fields:

• x

Defines top left column of ROI.

• y

Defines top left row of ROI.

• width

Defines width of ROI.

• height

Defines height of ROI.

 AnParams

Structure AnParams contains set of parameters controlling anonymization process. This structure

allows to define various parameters in runtime. Anonymization consists of two detection modules

(face and licence plate), for both the control of balance between true positive detections and false

alarms can be set by faceConfidenceThr, lpConfidenceThr parameters. Higher value means less false

detections and lower number of true detections, lower value means more true detections as well as

more false detections. Anonymization area and anonymization strength are controled by

faceDetSizeFactor and faceNumBlurPass (lpDetSizeFactor and lpNumBlurPass respectively). For

visualisation purposes the showDetections flag can be used. Detections are then highlighted insted of

blurred. Parameter keepExif is used to copy EXIF information from original file or JPG buffer to output

file or JPG buffer. The structure contains following fields:

typedef struct {

 int x;

 int y;

 unsigned int width;

 unsigned int height;

} AnROI;

typedef struct {

 AnROI ROI;

 int mode;

 int showDetections;

 int jpegQuality;

 int keepExif;

 int panoramic;

 double faceConfidenceThr;

 double faceDetSizeFactor;

 int faceNumBlurPass;

 double lpConfidenceThr;

 double lpDetSizeFactor;

 int lpNumBlurPass;

 int verbose;

} AnParams;

SDK Application Interface 12

Eyedea Recognition, s.r.o.

• ROI

Region of interest - the area scanned for detections, default area is from_col=0,

to_col=MAX_INT, from_row=0, to_row=MAX_INT. Values higher than size of processed

image are converted to nearest applicable value.

• mode

Flag indicating whether to anonymize faces or license plates or both. Default value is

ANONYMIZE_FACE | ANONYMIZE_LP (both faces and license plates are anonymized).

• showDetections

Debugging flag indicating, that detections will be highlighted instead of blurred.

Default value is 0.

• jpegQuality

Output image JPEG quality 0..100, default value is 90.

• keepEXIF

Copy EXIF and other non-image information from original file or JPG buffer to output file or

JPG buffer. This option does nothing when file is not JPG or when used for image buffer

anonymization. Note that EXIF image thumbnail is NOT anonymized and that this may not

work on nonstandard EXIFs. Default value is 0.

• panoramic

Enable copying of left and right borders to detect objects on the edges of panoramic photos.

Default value is 0.

• faceConfidenceThr

The minimal confidence of a face to be anonymized. (Detector return confidences > 0).

Default value is 10.0.

• faceDetSizeFactor

Parameter to enlarge (or shrink) faces anonymized area. Value lower than 1.0 means

anonymized area will be smaller than detection, value higher than 1.0 mean that

anonymized area will be larger than detection. Default value is 1.0.

• faceNumBlurPass

Number of blur passes over face detection. Higher number means stronger blur.

Default value is 1.

• lpConfidenceThr

The minimal confidence of a license plate to be anonymized.

(Detector return confidences > 0). Default value is 6.0.

• lpDetSizeFactor

Parameter to enlarge (or shrink) license plates anonymized area. Value lower than 1.0

means anonymized area will be smaller than detection, value higher than 1.0 mean that

anonymized area will be larger than detection. Default value is 1.0.

• lpNumBlurPass

number of blur passes over license plate detection. Higher number means stronger blur.

Default value is 1.

• verbose

Enables logging of anonymization progress on to stdout. Default value is 0.

SDK Application Interface 13

Eyedea Recognition, s.r.o.

 dFaceDetSizeFactor=1.0 dFaceDetSizeFactor=1.5

i
S
h
o
w
D
e
t
e
c
t
i
o
n
s
=
1

i
S
h
o
w
D
e
t
e
c
t
i
o
n
s
=
0

Table 1: Comparison of normal blurring vs. showing detections in red and comparison of
different sizes of blurring regions

iFaceNumBlurPass=1 iFaceNumBlurPass=2 iFaceNumBlurPass=3

Table 2: Comparison of different blur strength

SDK Application Interface 14

Eyedea Recognition, s.r.o.

5.2 Functions
This chapter contains the definition of the Anonymizer library functions which are present in the public

API. The chapter is divided into three parts. First part describes function for manipulation with

Anonymizer engine, second part describes functions for image anonymization and third section

describes all other functions.

 Engine manipulation functions

This part defines the API functions which are designed to initialize Anonymizer engine and to free

Anonymizer engine as well as to get engine version. The functions are: anInit(), anFree() and

anVersion(). These functions are defined in the Anonymizer.h file.

anInit

Initializes the Anonymizer engine and loads and set-ups all detection modules.

Specification:

Inputs:

• sdk_directory

Path of the AnonymizerSDK directory.

• ini_filename

Config file name (if NULL, default "config.ini" is used).

Outputs:

• state

Pointer to AnState structure.

Returns:

• 0 – Anonymizer was successfully initialized.

• other – Error while initializing Anonymizer.

Description:

The function anInit() initializes Anonymizer engine and loads detection modules for face detection and

license plates detection and load their configuration files. Input parameters are path to

AnonymizerSDK directory where detection modules and configuration files are located and filename

of main config. Function returns zero on success or error code if it fails.

Example:

int anInit(const char* sdk_directory, const char* ini_filename, ANState* state)

ANState state; // Anonymizer state handler

int ern;

if ((ern = anInit("../../AnonymizerSDK/", "config.ini", &state)) != 0)

{

 // error handling

}

SDK Application Interface 15

Eyedea Recognition, s.r.o.

anFree

Frees initialized Anonymizer engine.

Specification:

Inputs:

• state

Pointer to the initialized Anonymizer engine instance.

Description:

The function anFree() is used for freeing the Anonymizer engine. When the engine is not needed

anymore, for example at the end of the program, all underlying structures must be deallocated. The

input of the function call is the pointer AnState which was created using anInit() function during engine

initialization.

Example:

anVersion

Returns the Anonymizer engine version.

Specification:

Inputs:

• verbose

Verbosity flag. If enabled, function will return more information about SDK.

Returns:

• Anonymizer engine version.

Description:

The function anVersion() returns string with version of Anonymizer engine e. g. "Anonymizer

v5.0.0.8694"

Example:

void anFree(ANState state);

ANState state; // Anonymizer state handler

anInit("../../AnonymizerSDK/", "config.ini", &state); // Anonymizer init

 // working with state

anFree(state); // Free the Anonymizer state

IMPORTANT: Always free the Anonymizer engine when it is not needed anymore otherwise your

program will have memory leaks.

const char* anVersion(int verbose);

printf("Version: %s\n\n", anVersion(0)); // print Anonymizer version

SDK Application Interface 16

Eyedea Recognition, s.r.o.

 Anonymization functions

This part defines the API functions which are designed to anonymize images. Function anAnonymize()

anonymizes image files defined by its filename, function anAnonymizeImageBuffer() anonymizes raw

image data supplied in buffer and anAnonymizeJpegBuffer() anonymize JPEG encoded image data

supplied in buffer. Function anFreeBuffer() frees previously allocated buffer and function

anGetDefaultParams() returns default anonymization parameters values of AnParams structure.

These functions are defined in the Anonymizer.h file.

anAnonymize

Loads image file, runs anonymization and save result as JPEG file.

Specification:

Inputs:

• src_image_filename

Input image filename. Anonzmizer can load JPG, PNG, TIF and BMP files.

• dst_image_filename

Output image filename (in JPEG format).

• Params

Pointer to AnParams structure with Anonymization parameters.

Use NULL for default parameters.

• State

AnState Anonymizer state.

Returns:

• 0 – Successfully anonymized.

• other – Error during anonymization.

Description:

The function anAnonymize() loads image file specified by src_image_filename parameter, run

anonymization with parameters specified by Params parameter and save the anonymized image as

JPEG file specified by dst_image_filename.

Example:

int anAnonymize(const char* src_image_filename, const char* dst_image_filename,

 AnParams* params, ANState state);

if (anAnonymize("image.jpg", "image_anonymized.jpg", NULL, state)!=0)

{

 // error handling

}

SDK Application Interface 17

Eyedea Recognition, s.r.o.

anAnonymizeImageBuffer

Runs Anonymization on raw image buffer and outputs result as raw image buffer.

Specification:

Inputs:

• srcBuffer

Input structure with BGR data buffer, row-wise, 3 bytes (unsigned chars) per pixel,

index = 3*col + row*3*width.

• width

Image width.

• height

Image height.

• Params

Pointer to AnParams structure with Anonymization parameters.

Use NULL for default parameters.

• State

AnState Anonymizer state. See anInit() function.

Outputs:

• dstBuffer

Anonymized image in data buffer (BGR).

Returns:

• 0 – Successfully anonymized.

• other – Error during anonymization.

Description:

The function anAnonymizeImageBuffer() runs anonymization on raw BGR image data supplied in

buffer aligned row by row and returns result in buffer with same format. Output buffer dstBuffer must

be freed when it is no longer needed. See Anonymizer Example – buffers for more information.

Example:

int anAnonymizeImageBuffer(AnBuffer srcBuffer, unsigned int width, unsigned int height,

 AnParams* params, ANState state, AnBuffer* dstBuffer);

AnBuffer srcBuffer, dstBuffer; // input and output buffers

// fill srcBuffer with some image data

if (fcnAnAnonymizeImageBuffer(srcBuffer, img_width, img_height, NULL, state, &dstBuffer) != 0)

{

 // error handling

}

IMPORTANT: Always free dstBuffer structure with result when it is not needed anymore using

anFreeBuffer() function otherwise your program will have memory leaks.

SDK Application Interface 18

Eyedea Recognition, s.r.o.

anAnonymizeJpegBuffer

Runs Anonymization on JPEG image buffer and outputs result as JPEG image buffer.

Specification:

Inputs:

• srcBuffer

Input structure with JPEG encoded data buffer.

• Params

Pointer to AnParams structure with Anonymization parameters.

Use NULL for default parameters.

• State

AnState Anonymizer state. See anInit() function.

Outputs:

• dstBuffer

Anonymized image in JPEG data buffer.

Returns:

• 0 – Successfully anonymized.

• other – Error during anonymization.

Description:

The function anAnonymizeJpegBuffer() runs anonymization on JPEG image data (JPEG encoded data)

supplied in buffer and returns result in buffer with same format. Output buffer dstBuffer must be

freed when it is no longer needed. See Anonymizer Example – buffers for more information.

Example:

int anAnonymizeJpegBuffer(AnBuffer srcBuffer, AnParams* params, ANState state,

 AnBuffer* dstBuffer);

AnBuffer srcBuffer, dstBuffer; // input and output buffers

// fill srcBuffer with some image data

if (ern=fcnAnAnonymizeJpegBuffer(srcBuffer, NULL, state, &dstBuffer) != 0)

{

 // error handling

}

IMPORTANT: Always free dstBuffer structure with result when it is not needed anymore using

anFreeBuffer() function otherwise your program will have memory leaks.

SDK Application Interface 19

Eyedea Recognition, s.r.o.

anFreeBuffer

Frees the image buffer filled by Anonymizer SDK functions.

Specification:

Inputs:

• buffer

AnBuffer structure to free.

Description:

The function anFreeBuffer() frees data buffer previously allocated by anAnonymizeImageBuffer() or

anAnonymizeJpegBuffer() function.

Example:

anGetDefaultParams

Fills AnParams structure with default values.

Specification:

Outputs:

• parameters

Pointer to AnParams structure.

Returns:

• 0 – Success.

• other – Failure.

Description:

The function anGetDefaultParams() fills AnParams structure with default values. Pass pointer to

statically or dynamically allocated AnParams structure to be filled with default values.

Example:

void anFreeBuffer(AnBuffer buffer);

fcnAnFreeBuffer(dstBuffer); // free buffer allocated by Anonymizer

int anGetDefaultParams(AnParams* parameters);

AnParams params;

fcnAnGetDefaultParams(¶ms);

SDK Application Interface 20

Eyedea Recognition, s.r.o.

 Other functions

This part defines other API functions. Function anGetErrorMsg() is used to get error message for error

code. These functions are defined in the Anonymizer.h file.

anGetErrorMsg

Gets a message string related to the given error code.

Specification:

Inputs:

• ern

An error code of the message to be retrieved.

Returns:

• The null-terminated string containing the error message.

Description:

The function anGetErrorMsg() returns an error message of the error specified by error code.

Example:

const char* anGetErrorMsg(int ern);

int erno; // variable to save return value

// run some function and save return value to erno

if(erno != 0)
{
 printf("Function failed: %s\n", anGetErrorMsg(erno)); // Print error message
}

Examples 21

Eyedea Recognition, s.r.o.

6 Examples
This chapter contains description of examples which are contained in the SDK package. Examples are

used to demonstrate the functionality of the SDK, the source codes are included in the package and

are in detail described in this chapter. First example demonstrates how to anonymize image files

directly. Second example demonstrates how to anonymize images when you already have image data

in memory either encoded in JPEG or as raw BGR data.

6.1 Anonymizer Example – files
This basic example demonstrates how to use Anonymizer SDK to anonymize image files directly from

filesystem and write result back to filesystem. File reading and writing is handled by Anonymizer SDK.

The example is in the folder [Anonymizer_SDK]/examples/example-files/. The folder contains all

needed source codes and files for successful build. In case of Windows, Visual Studio 2015 project is

included, in case of Linux Makefile is included.

 Initialization of Anonymizer engine

First thing to do is the Anonymizer engine initialization using the anInit() function. Parameters of this

function are directory where AnonzmizerSDK modules are located (e. g. ../../AnonymizerSDK for

default package directory structure) and name of main configuration file (or NULL for default config.ini

file). Almost all API functions has integer return value and returns 0 on success or error code. To see

the error message use a anGetErrorMsg() function. More verbose error logs are printed to stderr.

After successful initialization of engine, anonymization functions can be used.

#define ANONYMIZER_SDK_DIR "../../AnonymizerSDK/" // define path to AnonymizerSDK

#define ANONYMIZER_INI "config.ini" // define filename of main config

ANState state; // Anonymizer state handler

int ern;

if ((ern = anInit((char*)ANONYMIZER_SDK_DIR, (char*)ANONYMIZER_INI, &state)) != 0)

{

 // error handling

}

Examples 22

Eyedea Recognition, s.r.o.

 Setting anonymization parameters

The anonymization parameters are set using AnParams structure. Example of AnParams initialization:

The ROI parameters define area where the anonymization is applied. (If the values of ROI are higher

than the image dimensions then these higher values are ignored and the whole image is processed.)

Parameters faceConfidenceThr and lpConfidenceThr define detection thresholds for face detection

and license plate detection, respectively. The lower values result in more detections together with

more false positives. The higher values decrease number of false positives and increase number of

false negative. The recommended range is <0,25>, the recommended value is 15.

Parameters faceDetSizeFactor and lpDetSizeFactor define the size of the blurred area with respect to

the size of detected object. Values below 1 decrease the area size, values above 1 increase the area

size (see table 1 in description of AnParams structure).

Parameters faceNumBlurPass and lpNumBlurPass denote number of blurring passes over the

detected object, i.e. they determine the blurring strength (see table 2 in description of AnParams

structure).

The showDetections flag is used highlighted detections for testing purposes (see table 1 in description

of AnParams structure).

The verbose flag switches on/off progress information to the stdout.

The panoramic flag switches on/off copying of left and right edges of images which is useful for

anonymizing of 360 degrees panoramic images where image on the left edge continues at right side

of image. Depending on other parameters, this setting increase processing time by about 5-10%.

The keepEXIF flag can be used for JPG files or buffers to copy EXIF data from source to output file/JPG

buffer. Note that EXIF thumbnail is NOT anonymized. May not work on nonstandard EXIFs.

AnParams parameters;
/* Region Of Interest (detection area) */
parameters.ROI.x = 0;
parameters.ROI.y = 0;
parameters.ROI.width = 1000000;
parameters.ROI.height = 1000000;
/* anonymize faces and License Plates */
parameters.mode = ANONYMIZE_FACE | ANONYMIZE_LP;
/* Output image quality */
parameters.jpegQuality = 90;
/* The minimal detection confidence of a face/LP to be anonymized. */
parameters.faceConfidenceThr = 15.;
parameters.lpConfidenceThr = 15.;
/* Parameter to enlarge anonymized area (1.0 == exactly detection) */
parameters.faceDetSizeFactor = 1.;
parameters.lpDetSizeFactor = 1.;
/* Number of blur passes over face/LP detection */
parameters.faceNumBlurPass = 1;
parameters.lpNumBlurPass = 1;
/* Debugging flag indicating, that detections will be highlighted instead of blurred */
parameters.showDetections = 1;
parameters.verbose = 0;
parameters.panoramic = 0;
parameters.keepEXIF = 0;

Examples 23

Eyedea Recognition, s.r.o.

 Image anonymization

To anonymize image located on drive function anAnonymize() is used. Parameters are input and

output image filenames, anonymization parameters and Anonymizer state. Input file can be JPG, PNG,

BMP or TIF file, output file is in JPG format.

 Cleaning up

At the end, when the work with the Anonymizer instance is finished (for example at the end of the

program), it must be freed. To free Anonymizer, use the API function anFree(), which is designed for

such purpose.

string input = "../../data/image.jpg";

string output = "image_anonymized.jpg";

// run anonymization - if anonymization parameters are NULL, default values are used

if (anAnonymize((char*)input.c_str(), (char*)output.c_str(), parameters, state)!=0)

{

 // error handling

}

anFree(state); // Free the Anonymizer state

Examples 24

Eyedea Recognition, s.r.o.

6.2 Anonymizer Example – buffers
This basic example demonstrates how to use Anonymizer SDK to anonymize images in buffers. This

can be useful when data are already in memory. Anonymizer can process raw images data in BGR

format or JPEG encoded data.

The example is in the folder [Anonymizer_SDK]/examples/example-buffers/. The folder contains all

needed source codes and files for successful build. In case of Windows, Visual Studio 2015 project is

included, in case of Linux Makefile is included.

 Initialization of Anonymizer engine

First thing to do is the Anonymizer engine initialization using the anInit() function. Parameters of this

function are directory where AnonzmizerSDK modules are located (e. g. ../../AnonymizerSDK for

default package directory structure) and name of main configuration file (or NULL for default config.ini

file). Almost all API functions has integer return value and returns 0 on success or error code. To see

the error message use a anGetErrorMsg() function. More verbose error logs are printed to stderr.

After successful initialization of engine, anonymization functions can be used.

 JPEG buffer anonymization

To anonymize buffer with JPEG encoded image, function anAnonymizeJpegBuffer() is used.

Parameters are input and output buffers, anonymization parameters and Anonymizer state. Functions

fread_buffer() and fwrite_buffer() are simple functions to read and write binary files. Codes of these

functions are included in example in file example-buffers.cpp.

#define ANONYMIZER_SDK_DIR "../../AnonymizerSDK/" // define path to AnonymizerSDK

#define ANONYMIZER_INI "config.ini" // define filename of main config

ANState state; // sdk state handler

int ern;

if ((ern = anInit((char*)ANONYMIZER_SDK_DIR, (char*)ANONYMIZER_INI, &state)) != 0)

{

 // error handling

}

// initialization ok

Examples 25

Eyedea Recognition, s.r.o.

 Image buffer anonymization

To anonymize buffer with raw BGR image, function anAnonymizeImageBuffer() is used. Parameters

are input and output buffers, image width and height, anonymization parameters and Anonymizer

state. OpenCV library is used in this example for image reading and writing.

 Cleaning up

At the end, when the work with the Anonymizer instance is finished (for example at the end of the

program), it must be freed. To free Anonymizer, use the API function anFree(), which is designed for

such purpose.

// anonymization of image buffer

string input = "../../data/image.jpg";

string output = "image_anonymized.jpg";
cv::Mat imageBGR, imageAnonymized;

imageBGR = cv::imread(input.c_str(), cv::IMREAD_COLOR); // Read the file - BGR order

srcBuffer.raw_data = imageBGR.data;

unsigned char* anonymizedBuffer = NULL; // anonymized buffer - ouptut of anonymization

cv::Size s = imageBGR.size();

if (fcnAnAnonymizeImageBuffer(srcBuffer, s.width,s.height, NULL, state, &dstBuffer) != 0)

{

 // error handling

}

memcpy(imageBGR.data, dstBuffer.raw_data, imageBGR.total()*imageBGR.elemSize());// set anonymized

data back to BGR image

cv::imwrite(output + ".Buffer.jpg", imageBGR); // and write

fcnAnFreeBuffer(dstBuffer); // free buffer allocated by Anonymizer

anFree(state); // Free the Anonymizer state

// Anonymization of JPEG buffer

string input = "../../data/image.jpg";

string output = "image_anonymized.jpg";
AnBuffer srcBuffer, dstBuffer;

if (fread_buffer((char*)input.c_str(), &(srcBuffer.raw_data), &(srcBuffer.length)) != 0)

{

 // error handling

}

if (ern=fcnAnAnonymizeJpegBuffer(srcBuffer, NULL, state, &dstBuffer) != 0)

{

 // error handling

}

if (fwrite_buffer((char*)((output + ".JpegBuffer.jpg").c_str()), dstBuffer.raw_data,

dstBuffer.length) != 0)

{

 // error handling

}

delete [] srcBuffer.raw_data;

fcnAnFreeBuffer(dstBuffer);

Examples 26

Eyedea Recognition, s.r.o.

7 Anonymizer command line application
Anonymizer SDK package contains anonymizer-cmd application for batch anonymization of images

located at [Anonymizer_SDK]\applications\anonymizer-cmd. This command-line application uses

simple interface, user sets input list of images to be processed, and output directory for anonymized

images. Optional parameters are JPEG output quality, mode to visualize detections instead of blurring,

possibility to blur only registration plates or only faces and possibility to anonymize only selected area

of images as well as few other options to control blurring parameters.

Usage of anonymizer is:
anonymizer [options] image_list

Where options can be:
-o=directory sets the output directory for anonymized images
-q=n jpeg quality n = 1..100 (90 default)
--keep_exif copy EXIF from original JPG file to output file
--lp run registration plates anonymization only
--lp_thr= threshold on plates detections
--face run face annonymization only
--face_thr= threshold on face detection
--roi=[x,y,width,height] anonymization ROI (region of interest)
--to_row= position of bottom row of rectangle to process
--from_col= position of left column of rectangle to process
--to_col= position of right column of rectangle to process
--face_num_blur_pass= strength of blurring of faces (1, 2, 3, ...)
--lp_num_blur_pass= strength of blurring of license plates (1, 2, 3, ...)
--face_size_factor= size of blurred area relative to size of detected face
--lp_size_factor= size of blurred area relative to size of detected lp
--show colorize detections instead of blurring them
--panoramic anonymize faces and plates divided by left and right edge
--verbose more verbose run

 These options can be printed by running anonymizer –-help

Examples:

./anonymizer -o=output_dir image_list.txt

This command will anonymize both license plates and faces in images in

image_list.txt and writes them to directory output_dir.

./anonymizer -o=o_dir –face --face_thr=20 image_list.txt

 This command will anonymize only faces with score above 20 in images in

 image_list.txt and writes them to directory o_dir.

Where image_list.txt is text file with paths to image files to be processed, one file per line. Filepaths

can be absolute or relative to anonymizer binary. Script make_imagelist is included in directory of

anonymizer-cmd. Example of image list can be:

/local/data/images/DSC_5243.jpg
/local/data/images/DSC_5244.jpg
/local/data/images/DSC_5245.jpg

Anonymizer SDK Licensing 27

Eyedea Recognition, s.r.o.

8 Anonymizer SDK Licensing
Anonymizer SDK uses the 3rd party framework developed by Gemalto for software protection

and licensing. The SDK is protected against reverse engineering and unlicensed execution using

the hardware USB keys. The SDK cannot be used without the USB license key with the valid license.

8.1 License Key Types
The SDK allows to load the license from several hardware keys types, which are listed in the following

table. The keys differ in number of licenses which can be contained (Pro and Max versions), by physical

dimensions, ability to contain timed licenses (Time versions) and ability to distribute the licenses

over the network (Net versions).

SKU Product SKU Product

SH-PRO Sentinel HL Pro

SH-BRD
Sentinel HL Max
(Board form factor)

SH-MAX Sentinel HL Max

SH-TIM Sentinel HL Time

SH-MIC
Sentinel HL Max
(Micro form factor)

SH-NET Sentinel HL Net

SH-CHP
Sentinel HL Max
(Chip form factor)

SH-NTT Sentinel HL NetTime

8.2 Licenses Overview
Several licenses are available for the Anonymizer SDK. The licenses differ in the type of the binary

models which can be loaded, the time when the license is valid and the number of allowed recognition

function executions.

 Execution counting

The execution counting license allows to count how many times was the license logged in. The SDK is

designed in the way it logs in the license every time image anonymization is executed. It allows to limit

the number of processed images with the license. This is standard type of license for Anonymizer.

 Time limited license

The time limited license allows to add the restriction on time when the license is valid. The date

of the end of the license validity or the number of the days for which the license is valid after the first

usage can be set. This license can be set on Time keys only (see License Key Types). This type of license

is used for anonymization of large image quantities.

Anonymizer SDK Licensing 28

Eyedea Recognition, s.r.o.

 Perpetual license

The perpetual license is the least restricted license available. It allows the user to use the license in

one instance for unlimited time and unlimited number of executions. This license type is used for

anonymization of very large image quantities.

8.3 License Management
The license protection software provides the web interface for license management. The web

interface can be found on the address http://localhost:1947 opened in the common web browser.

It allows the user to list the connected license keys, see the details of the arbitrary license key, update

the license and several other functions.

 Connected license keys

On the address http://localhost:1947/_int_/devices.html the list of license keys currently plugged in

the computer is available. The list contains basic information about each key which includes: location

of the key (Local or IP/name of the remote machine), Vendor ID, Key ID, Key Type, Configuration,

Version and the number of connected Sessions. Each key also allows to list the contained license

products, features and sessions using the buttons Products, Features and Sessions. The USB key LED

can be blinked to easy identification using the button Blink on. The unique key identification file can

be downloaded using the button C2V.

Illustration 2: Web interface with list of plugged keys on http://localhost:1947/_int_/devices.html

 License key details

The detailed info about the plugged key can be get by clicking on the button Features in the Connected

license keys list or on the address http://localhost:1947/_int_/features.html?haspid=KEYID, where the

http://localhost:1947/
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/features.html?haspid=KEYID

Anonymizer SDK Licensing 29

Eyedea Recognition, s.r.o.

KEYID is the ID of the key. The web page contains information about the licenses contained on the key.

The set of the Features represents the license. Each Feature can control different part of the SDK

workflow (initialization, detection, anonymization, …).

Illustration 3: Web interface with key 0123456789
details on http://localhost:1947/_int_/features.html?haspid=0123456789

http://localhost:1947/_int_/features.html?haspid=0123456789

Anonymizer SDK Licensing 30

Eyedea Recognition, s.r.o.

8.4 License Update
The license is updated using the special *.v2c file which is emitted by the licensor of the software.

The license update file is generated for specific license key ID and only that key can be updated using

the file. There are two ways of updating the license: Web interface and Command line.

The license update must be done on the computer, where the protection software supplied with the

SDK package is installed. For more information about the protection software installation see

the chapter Installation Guide.

 Web interface

First option allows user to update the license using the web interface of the license management

software Sentinel Admin Control Center. The web interface which can be opened in all modern

browsers is located at http://localhost:1947/_int_/checkin.html.

Illustration 4: Web interface for license update on http://localhost:1947/_int_/checkin.html

How to update the license:

1. Open the link http://localhost:1947/_int_/checkin.html in the web browser.

2. Click on Choose File button and select *.v2c file which you want to use for update.

3. Click on Apply File button.

4. Webpage with the result of the license update is shown.

IMPORTANT: Hardware protection key dongle with license to update needs to be connected to

the machine where the license update file is applied.

http://localhost:1947/_int_/checkin.html
http://localhost:1947/_int_/checkin.html
http://localhost:1947/_int_/checkin.html

Anonymizer SDK Licensing 31

Eyedea Recognition, s.r.o.

 Command line

Second option to update the license is using Windows command line or Linux console. This approach

can be very useful when applying update remotely or on many devices. It is also suitable for

automating the license update procedure. This option requires basic knowledge of Windows

command line or Linux console. The license update file *.v2c is applied using the hasp_update utility

from the folder [Anonymizer_SDK]/hasp/.

Windows command line

Run the hasp_update utility with following parameter and *.v2c file on the selected machine:

C:\product\hasp> ./hasp_update u /path/to/v2c/license.v2c

When command runs with no error, the license is updated.

Linux console

Run the hasp_update utility with following parameter and *.v2c file on the selected machine:

eyedea@eyepc:~/product/hasp$./hasp_update u /path/to/v2c/license.v2c

When command runs with no error, the license is updated.

Third Party Software 32

Eyedea Recognition, s.r.o.

9 Third Party Software
The Anonymizer SDK uses third party software libraries, in accordance with their licenses. The licenses

can be found under [Anonymizer_SDK]/docs/3rdparty-licenses.

Here is a complete list of all libraries used, in alphabetical order:

• Iniparser

• OpenCV

