
Eyedea MMR SDK
Developer’s Guide Version 2.24

Copyright © 2024, Eyedea Recognition s. r. o.

All rights reserved

Eyedea Recognition s. r. o. is not liable for any damage or loss caused by incorrect or inaccurate results or

unauthorized use of the MMR SDK software.

Thales, the Thales logo, are trademarks and service marks of Thales S.A. and are registered in certain coun-

tries. Sentinel, Sentinel Admin Control Center and Sentinel Hardware Key are registered trademarks of

Thales S.A..

NVIDIA, the NVIDIA logo, GeForce, GeForce GTX, CUDA, the CUDA logo are trademarks and/or registered

trademarks of NVIDIA Corporation in the U.S. and/or other countries.

Microsoft Windows, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows 10,

Windows 11, Windows logo and Visual Studio are registered trademarks of Microsoft Corporation in the

United States and/or other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Python is a registered trademark of The Python Software Foundation. The Python logos (in several variants)

are use trademarks of The Python Software Foundation as well.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners.

All personal information in photos in this document were either anonymized or altered to avoid possibility

of direct or indirect identification of any person.

Contact:

Address: Eyedea Recognition, s.r.o.

Vyšehradská 320/49

128 00, Prague 2

Czech Republic

web: www.eyedea.cz

email: info@eyedea.cz

https://www.eyedea.cz
mailto:info@eyedea.cz

TABLE OF CONTENTS 3

Table of Contents
1 Product Description 5

1.1 Technical Details . 5

1.2 SystemWorkflow . 6

2 Installation Guide 8

2.1 Pre-installation . 8

2.2 Sentinel LDK Installation . 8

2.3 Verification of Installation . 8

2.4 Installation Failures . 9

2.5 Managing Licenses . 9

2.6 License Error Codes . 10

2.7 TensorRT . 10

2.8 OpenGL Prerequisites . 11

3 ERImage Application Interface 12

3.1 Image Format . 12

3.2 Application Interface . 14

4 ER Types 23

4.1 Enumerators . 23

4.2 Structures . 23

4.3 Functions . 24

5 SDK Application Interface 25

5.1 Structures . 25

5.2 Functions . 30

6 MMR Results 40

6.1 EdfClassifyResult and EdfClassifyResultValue . 40

6.2 Task View . 41

6.3 Task View8 . 41

6.4 Task Category . 42

6.5 Task Make . 42

6.6 Task Model . 43

6.7 Task Generation . 43

6.8 Task Variation . 44

6.9 Task Color . 44

6.10 Task Tag . 44

7 Examples 47

7.1 Eyedea MMR SDK Example . 47

8 MMR SDK Licensing 53

8.1 License Key Types . 53

8.2 Licenses Overview . 53

8.3 License Management . 54

8.4 License Update . 55

Eyedea Recogniton, s.r.o.

TABLE OF CONTENTS 4

9 Third Party Software 57

9.1 Used Libraries . 57

Eyedea Recogniton, s.r.o.

Product Description 5

1 Product Description
Eyedea MMR SDK is a cross-platform software library developed to provide “road users” recognition func-

tionality. It defines an interface between the client’s software and our state-of-the-art recognition solution.

Eyedea MMR SDK allows a client to recognize a road user located in digital image. The recognition output

contains the information about the road user’s view and category, in case of vehicle also make, model,

generation, variation and color. Additional information regarding the road user is presented in the form of

tags.

Road user’s view can be frontal or rear. Road users are divided intomany categories like animal, pedestrian,

bus, car, heavy truck, light truck, motorbike, van etc. The manufacturers of the vehicles are defined in

the make output parameter – e.g. Toyota, Volkswagen, etc. The model parameter then distinguishes the

bodywork of vehicles created by specific manufacturer – Avensis, Passat, etc. Generation specifies mark

and year of first sale of a specific bodywork, e.g. Mk I (2015). Variation describes nuances in bodywork or

trim level, e.g. Wagon, Sedan, Sportline etc.

Road user tagmay label the road user, e.g. as ambulance or pickup.

1.1 Technical Details
Eyedea MMR SDK consists of two libraries – base MMR SDK library and the recognition module. Both are

x86/x64/aarch64 libraries with C interface. The base MMR SDK library is the only entry point, the user

never uses the recognition module directly.

The recognition module is loaded and configured using the base MMR SDK library. The configuration pa-

rameters are loaded from one of the binary models, which are contained in the distribution.

The MMR SDK library provides following APIs:

• C native API

• C++ API

• Java JNI API

• C# API (Windows only)

• Python wrapper

Officially supported operating systems and platforms:

• Windows 7, 8, 8.1, 10 and 11

32 and 64 bit (Visual Studio 2019)

• Ubuntu 18.04 and higher

64 bit and aarch64

Eyedea Recogniton, s.r.o.

Product Description 6

1.2 SystemWorkflow
The workflow of the MMR system consists of image acquisition, road user detection by bounding box (in

case of a vehicle a license plate detection can be used instead), input image cropping, road user descriptor

computation and road user classification. The image acquisition and the bounding box and/or license plate

detection are not part of this SDK and must be solved separately, either by client’s library or using Eyedea

LPM library.

The process starts with the input image cropping with respect to the bounding box or license plate detec-

tion. The image crop is done using the SDK, it crops and transforms the image in the way that only the

road user of interest is contained in the cropped image. The crop is the input of the machine learning algo-

rithm, which is contained in the SDK’s recognition module. The output is a descriptor (real number vector)

describing the input vehicle in a condensed form. The descriptor is then classified, where the output is the

classification result – human readable output of the road user recognition.

Eyedea Recogniton, s.r.o.

Product Description 7

Eyedea Recogniton, s.r.o.

Installation Guide 8

2 Installation Guide
Installation of the software licensing daemon is the first step to start using theMMR SDK. The library comes

equipped with a standard third-party software licensing solution, Sentinel LDK by Thales. This chapter will

guide the client through installation on Windows and Linux. In the process, the client will install a dae-

mon service, Sentinel License Manager, that will automatically start upon system startup. The application

enables execution of the encrypted MMR SDK binaries, and management of licenses using a web browser.

2.1 Pre-installation
Prior to the installation of the licensing software, all Sentinel Hardware Keys should be removed from the

target computer based on the recommendation from Thales. Leaving it connected during the installation

process might cause the Sentinel Hardware Key to not be properly recognized by the new installation of

Sentinel License Manager.

Sentinel License Manager does not support read only filesystems (on Windows, the functionality is called

Enhanced Write Filter).

2.2 Sentinel LDK Installation

2.2.1 Windows
Follow these steps to install Sentinel License Manager on a Windows machine:

• Start the command line “cmd” with Administrator privileges.

• Navigate to the [MMR_SDK]/hasp/ directory.

• Execute “dunst.bat” to uninstall any previous versions of Sentinel License Manager.

• Execute “dinst.bat” to install Sentinel License Manager.

2.2.2 Linux
Follow these steps to install Sentinel License Manager on a Linux machine:

• Start the command line and navigate to the [MMR_SDK]/hasp/ directory.

• On 64-bit Linux distributions, install the 32-bit compatibility binaries.

– On Ubuntu 18.04 and higher: Execute “sudo apt-get install libc6:i386”.

• Execute “sudo ./dunst” to uninstall any previous versions of Sentinel License Manager.

• Execute “sudo ./dinst” to install Sentinel License Manager.

– Without compatibility binaries, error “No such file or directory.” might appear.

2.3 Verification of Installation
The software licensing daemon contains a web-based interface, which also allows the client to check the

available licenses. To verify that the installation of Sentinel License Manager was successfully completed,

the client should open a web browser at http://localhost:1947/_int_/devices.html. The web page will be

displayed, as seen in the image below. The client must check that the trial licenses were installed properly,

and that the MMR SDK works on the machine, before ordering a full license. If not, a problemmay arise in

the future when connecting the full license, resulting in a licensing failure and additional costs to relicense

the software to another machine. The web page lists all available license keys. Under the “Products” link

in the left pane all available products are listed.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/devices.html

Installation Guide 9

Sentinel License Manager screenshot.

2.4 Installation Failures
OnWindows, antivirus application might break the installation of Sentinel License Manager. If the installa-

tion failed, the client should disable the antivirus application and rerun the installation of Sentinel License

Manager. Even after successful installation, Sentinel License Manager might fail to show up in the web

browser. This can be solved by adding

C:\Windows\system32\hasplms.exe

to the exception list of the antivirus. Port number 1947 must be also added to the exception list of the

Windows firewall, and also to the antivirus exception list, if it uses its own firewall.

2.5 Managing Licenses
It is of the utmost importance that the client understands the licensing schemes used in the Thales Sen-

tinel LDK software protection framework. Otherwise, unrepairable damage might be caused, leading to

additional costs to recover the already purchased licensing keys. The topic of license management is fully

covered in the chapterMMR SDK Licensing.

Eyedea Recogniton, s.r.o.

Installation Guide 10

2.6 License Error Codes
Error codes are outputted to the error stream of the application (typically stderr) usingMMR SDK. The user

needs to check the error stream for error codes and fix the issues before deployment. The following error

codes and messages are the most common ones:

• H0007 – Sentinel HASP key not found. (No license for the MMR SDK on the PC.)

• H0033 – Unable to access Sentinel HASP Runtime Environment. (No License Manager found.)

• H0041 – Feature has expired. (The license on the PC has expired, consider renewal.)

The shared library of MMR SDK is encrypted for enhanced software protection. However, in case of failure,

the application does not terminate, but crashes after a few calls to the library; this is a security measure

against reverse engineering but may confuse the users. The client needs to make sure they monitor the

error codes outputted by the error stream to distinguish between programming errors and licensing prob-

lems.

2.7 TensorRT
The MMR SDK can use TensorRT to run detection and OCR models, SDK package contains data files and

command-line utility which can be used to generate TensorRT model for specific target device.

2.7.1 TensorRT MMR SDK Models
For devices with Nvidia GPUs, when TensorRT GPU mode is set, the classifiers cannot be prepared in ad-

vance and the folder

[MMR_SDK]/sdk/modules/edftrt-mmr/model

does not include prebuilt .dat files, but only their prototypes. Before running the software for the first time

on a specific Nvidia GPU device type, the .dat files must be created using an utility called edftrt_dat_en-

coderwhich should be located in the [MMR_SDK]/tools directory. For example, if the client has 100 iden-

tical devices, they only need to follow this process once and then share the created .dat files among the

devices.

To run the edftrt_dat_encoder utility, the client needs to make sure the relevant Nvidia TensorRT libraries

are visible in the system, which can be checked using ldd utility as “ldd edftrt_dat_encoder”. If not found,

the Nvidia TensorRT need to be added to the library path using the following command like:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/$(uname -m)-linux-gnu/

The edftrt_dat_encoder utility must be executed when there is no other process utilizing resources on

the target device, otherwise the created .dat files will not give the best possible performance. By default,

the generated .dat files use float32 (FP32) computation mode. Using float16 (FP16) computation mode

evaluation speed can be improved, but the effect on accuracy needs to be verified. Use parameter “-h”

with the edftrt_dat_encoder utility to see all options, run the utility without any options to use defaults.

Conversion can take several minites depending on the specific device type. Warnings might appear during

the generation which can be ignored.

Eyedea Recogniton, s.r.o.

Installation Guide 11

2.7.2 Generating Device Specific Models
Here is an example of a command that can be used from inside the models directory:

./edftrt_dat_encoder -p=./ -w=2048 -q=FP16

The “-p” argument denotes the path in which the utility will look for model prototypes (file triples with

extensions .dat.pre, .dat.net, .dat.post) tomake optimized .dat files from, “-q” sets the quantization, and “-

w” sets the workspace size - see the official NVIDIA TensorRT documentation (docs.nvidia.com/deeplearn-

ing/tensorrt/api/c_api/) for the function IBuilderConfig::setMaxWorkspaceSize formore informationabout

this parameter.

2.7.3 Known Issues
As of Nvidia TensorRT 8.2, there are still documented known issues in Nvidia TensorRT library that can

cause the generated .dat files to lose accuracy or completely misbehave. It is up to the customer to verify

the newly created .dat files give expected performance, for example by comparing with the results ofMMR

SDK CPU version.

2.8 OpenGL Prerequisites
For Nvidia Jetson devices, we also provide MMR SDK with Tensorflow Lite backend, which utilizes OpenGL

for GPU processing. To be able to use GPU, the Jetson SD card image must be installed with nvidia-l4t-3d-

core package, described as “NVIDIA GL EGL Package”. This package is installed during the default instal-

lation of Nvidia JetPack. When using a remote shell to connect to a device where the client wants to be

using OpenGL GPU mode, X forwarding must be turned off.

Eyedea Recogniton, s.r.o.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/

ERImage Application Interface 12

3 ERImage Application Interface
This part describes ERImage library used for image data storage andmanipulation byMMR SDK. The Image

Format section describes how image data is stored in the memory from a theoretical point of view, and

the remaining parts cover the application interface used for image manipulation using the data structure

ERImage. Description of all available Enumerators, Structures and Functions is included.

3.1 Image Format
Digital image data can be persisted in many different forms. Since it is the main input of the processing,

it is very important to understand the form used for image storage and manipulation. Currently five color

models are supported in the ERImage image structure. The first is the BGR color model, the second is the

Gray color model, the third is the YCbCr I420 color model, the fourth is the BGRA color model, and the fifth

is the YCbCr NV12 color model.

3.1.1 BGR
Three-channel model, which is derived from RGB, and is sup-

ported by the ERImage is BGR (B – blue, G – green, R – red). BGR

(B – blue, G – green, R – red) is a three-channel model supported

by ERImage; it is derived from RGB.

The model stores image using three values per pixel, where the first value is the blue component, the

second value is the green component and the third is the red component. An image is saved row by row

in a 1D array. The following formulas show how to access the pixel color components B, G and R in the

1D array data of the image with resolution width × height on coordinates (x, y). Coordinates x, y and data

array indices are 0-based.

B(x,y) = data(3 ∗ (width ∗ y + x) + 0) B component at (x, y) coordinates

G(x,y) = data(3 ∗ (width ∗ y + x) + 1) G component at (x, y) coordinates

R(x,y) = data(3 ∗ (width ∗ y + x) + 2) R component at (x, y) coordinates

3.1.2 Gray
The one-channel model Gray is used for storing grayscale images, which are composed

of luminance values (Y - luminance). The model stores images using one value per pixel,

where the value is the luminance component. The image is saved row by row in a 1D

array. The following formula shows how to access the pixel luminance component Y

in the 1D array data of an image with resolution width × height at coordinates (x, y).

Coordinates x, y and data array indices are 0-based.

Y (x,y) = data(width ∗ y + x) Y component at (x, y) coordinates

Eyedea Recogniton, s.r.o.

ERImage Application Interface 13

3.1.3 YCbCr I420

Y00 Y01

Y06 Y07

Y02 Y03

Y08 Y09

Y04 Y05

Y10 Y11

Y12 Y13

Y18 Y19

Y14 Y15

Y20 Y21

Y16 Y17

Y22 Y23

CB0 CB1

CR0 CR1

CB2 CB3

CR2 CR3

CB4 CB5

CR4 CR5

The three-plane model YCbCr I420 is used for storing color image,

where the first plane contains luminance (Y component, image bright-

ness), the second plane contains the blue-difference chroma compo-

nent (Cb) and the third plane contains the red-difference chroma com-

ponent (Cr). Cb and Cr planes have half the resolution of the Y image

plane. Four neighboring Y values belongs to one Cb and one Cr value.

The image is saved per plane, where each plane is saved row by row in

a 1D array. The following formulas show how to access the pixel color

components Y, Cb and Cr in the 1D array data of an image with reso-

lution width × height at coordinates (x, y). Coordinates x, y and data

array indices are 0-based. All divisions in the formulas are integer

divisions.

Y (x,y) = data(width ∗ y + x) Y component at (x, y) coordinates

|Y | = width ∗ height Size of the Y image plane

Cb(x,y) = data(|Y | + y

2 ∗ width

2 + x

2) Cb component at (x, y) coordinates

|Cb| = |Cr| = width ∗ height

4 Size of the Cb and Cr image plane

Cr(x,y) = data(|Y | + |Cb| + y

2 ∗ width

2 + x

2) Cr component at (x, y) coordinate

3.1.4 BGRA
BGRA (B – blue, G – green, R – red, A – alpha) is

a four-channel model supported by the ERImage;

it is derived from RGBA. The model stores images

using four values per pixel, where the first value is

the blue component, the second value is the green

component, the third is the red component and the fourth value is the alpha component (transparency).

An image is saved row by row in a 1D array. Following formulas show how to access the pixel color com-

ponents B, G, R and A in the 1D array data of an image with resolutionwidth × height at coordinates (x, y).

Coordinates x, y and data array indices are 0-based.

B(x,y) = data(4 ∗ (width ∗ y + x) + 0) B component at (x, y) coordinates

G(x,y) = data(4 ∗ (width ∗ y + x) + 1) G component at (x, y) coordinates

R(x,y) = data(4 ∗ (width ∗ y + x) + 2) R component at (x, y) coordinates

A(x,y) = data(4 ∗ (width ∗ y + x) + 3) A component at (x, y) coordinates

Eyedea Recogniton, s.r.o.

ERImage Application Interface 14

3.1.5 YCbCr NV12

Y00 Y01

Y06 Y07

Y02 Y03

Y08 Y09

Y04 Y05

Y10 Y11

Y12 Y13

Y18 Y19

Y14 Y15

Y20 Y21

Y16 Y17

Y22 Y23

CB0 CR0

CB3 CR3

CB1 CR1

CB4 CR4

CB2 CR2

CB5 CR5

The two-plane model YCbCr NV12 is used for storing color im-

ages, where the first plane contains luminance (Y component, im-

age brightness) and the second plane contains interleaved blue-

difference chroma components (Cb) and red-difference chroma com-

ponents (Cr). The Cb and Cr planes have half the height and the same

width as the Y image plane (because there are two components).

Four neighboring Y values belongs to one Cb and one Cr value.

The image is saved per plane, where each plane is saved row by row

in a 1D array. The following formulas show how to access the pixel

color components Y, Cb and Cr in the 1D array data of the image with

resolution width × height at coordinates (x, y). Coordinates x, y and

data array indices are 0-based. All divisions in the formulas are in-

teger divisions.

Y (x,y) = data(width ∗ y + x) Y component at (x, y) coordinates

|Y | = width ∗ height Size of the Y image plane

Cb(x,y) = data(|Y | + y

2 ∗ width + x

2) Cb component at (x, y) coordinates

Cr(x,y) = data(|Y | + y

2 ∗ width + x

2 + 1) Cr component at (x, y) coordinate

|CbCr| = width ∗ height

2 Size of the CbCr image plane

3.2 Application Interface

3.2.1 Enumerators
This part defines the API enumerators which are related to the ERImage structure:

ERImageColorModel

ERImageColorModel is used to specify how the color channel values are saved in the image. More infor-

mation about the supported color models is in the section Image Format.

• ER_IMAGE_COLORMODEL_UNK = 0

Default value - Unknown color model.

• ER_IMAGE_COLORMODEL_GRAY = 1

One-channel grayscale color model. Image luminance values are saved row by row.

• ER_IMAGE_COLORMODEL_BGR = 2

Three-channel BGR color model. Three values per pixel, stored row by row.

• ER_IMAGE_COLORMODEL_YCBCR420 = 3

Three-plane YCbCr I420 colormodel. Luminance plane and two chroma planes are stored separately,

each row by row.

• ER_IMAGE_COLORMODEL_BGRA = 4

Four-channel BGRA color model. Four values per pixel, stored row by row.

Eyedea Recogniton, s.r.o.

ERImage Application Interface 15

• ER_IMAGE_COLORMODEL_YCBCRNV12 = 5

Two-plane YCbCr NV12 color model. Luminance plane and interleaved chroma plane are stored sep-

arately each row by row.

ERImageDataType

ERImageDataType specifies the data type used for storing values of the image.

• ER_IMAGE_DATATYPE_UNK = 0

Default value – unknown data type.

• ER_IMAGE_DATATYPE_UCHAR = 1

All image values are saved as unsigned char.

• ER_IMAGE_DATATYPE_FLOAT = 2

All image values are saved as float.

3.2.2 Structures
This part defines the API structure ERImage used for digital image data manipulation:

ERImage

typedef struct {
ERImageColorModel color_model;
ERImageDataType data_type;
unsigned int width;
unsigned int height;
unsigned int num_channels;
unsigned int depth;
unsigned int step;
unsigned int size;
unsigned int data_size;
unsigned char* data;
unsigned char** row_data;
unsigned char data_allocated;

} ERImage;

ERImage represents the digital image data in a special structure designed to work with the MMR SDK.

The structure contains the color model and the data type in the ERImageColorModel, and the ERImage-

DataType enumerators, together with the parameters defining the size of the image and the underlying

data. Image data is saved in the data field row by row as a contiguous 1D array. For more information see

the section Image Format.

• color_model

Image data color model represented by the enumerator ERImageColorModel.

• data_type

Image date type represented by the enumerator ERImageDataType.

• width

Width of the image in pixels.

• height

Height of the image in pixels.

• num_channels

Number of image channels. Zero for YCbCr color models.

• depth

Size of one image pixel in bytes. Zero for YCbCr color models.

• step

Number of bytes between each two beginnings of the row in the data array.

Eyedea Recogniton, s.r.o.

ERImage Application Interface 16

• size

Size of the image in bytes.

• data_size

Size of the allocated data in the structure.

• data

Array containing the image data.

• Row_data

Array containing pointers to the data array. Each element points to the beginning of the specific

image row in the data array.

• data_allocated

Value containing the flag whether the data field was allocated within the structure or on the user’s

side. (0 – allocated by user, 1 – allocated within the structure)

3.2.3 Functions
This part defines the API functions which are designed to work with the ERImage structure:

• Allocation

erImageAllocate, erImageAllocateBlank, erImageAllocateAndWrap and erImageCopy

• Properties

erImageGetDataTypeSize, erImageGetColorModelNumChannels, erImageGetPixelDepth and

erVersion

• IO Operations

erImageRead and erImageWrite

• Freeing

erImageFree

These functions are defined in the er_image.h file.

erImageAllocate

Allocates an ERImage structure.

Specification:

int erImageAllocate(ERImage* image, unsigned int width, unsigned int height,
ERImageColorModel color_model, ERImageDataType data_type);

Input:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Eyedea Recogniton, s.r.o.

ERImage Application Interface 17

Description:

The function erImageAllocate() is used for ERImage structure data allocation. The input of the function is

the pointer to the ERImage structure instance, the width and height of the image to allocate, and the color

model and the data type specification.

Example:

ERImage* image = new ERImage();
// Allocate grayscale (1 channel) image with resolution 800x600 and 1 byte per channel
int res = erImageAllocate(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY , ER_IMAGE_DATATYPE_UCHAR);

erImageAllocateBlank

Allocates an ERImage structure without allocating the internal data arrays.

Specification:

int erImageAllocateBlank(ERImage* image, unsigned int width, unsigned int height,
ERImageColorModel color_model, ERImageDataType data_type);

Input:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Description:

The function erImageAllocateBlank() is used for ERImage structure properties allocation, but without the

internal data array allocation. The input of the function is the pointer to the ERImage structure instance,

the width and height of the image to allocate, and the color model and the data type specification.

Example:

ERImage* image = new ERImage();
// Allocate blank BGR (3 channel) image with resolution 640x480 and 1 float per channel
int res = erImageAllocateBlank(image,640,480, ER_IMAGE_COLORMODEL_BGR , ER_IMAGE_DATATYPE_FLOAT);
// image->data == NULL, image->row_data == NULL and image->data_size == 0

IMPORTANT: Only the fields with image properties are allocated. Image data field is NULL, row_data

is NULL and field data_size is 0 after a successful function call.

Eyedea Recogniton, s.r.o.

ERImage Application Interface 18

erImageAllocateAndWrap

Allocates an ERImage structure and wraps it over the supplied image data.

Specification:

int erImageAllocateAndWrap(ERImage* image, unsigned int width, unsigned int height,
ERImageColorModel color_model, ERImageDataType data_type,
unsigned char* data, unsigned int step);

Input:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

• data

Image data to wrap.

• step

Definition of the input data image row step. (length of one image row in bytes in the input data)

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Description:

The function erImageAllocateAndWrap() is used for ERImage structure data allocation andwrapping of the

supplied image data. The input of the function is the pointer to the ERImage structure instance, the width

and height of the image to allocate, the color model and the data type specification, the pointer to the

image data to wrap, and the step value which defines the size of the row in bytes.

Example:

unsigned char* data; // Image data to wrap
ERImage* image = new ERImage();
// Allocate grayscale (1 channel) image with resolution 800x600 and 1 byte per channel
// and wrap it over the image data supplied in the unsigned char* data array.
int res = erImageAllocateAndWrap(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY ,

ER_IMAGE_DATATYPE_UCHAR , data, 800);

erImageCopy

Performs a deep copy of the ERImage structure instance.

Specification:

int erImageCopy(const ERImage* image, ERImage* image_copy);

Input:

• image

Pointer to the ERImage structure instance to copy.

• image_copy

Pointer to the ERImage structure to copy the data into.

Eyedea Recogniton, s.r.o.

ERImage Application Interface 19

Returns:

• 0 – Image successfully copied.

• other – Error during image copying.

Description:

The function erImageCopy() is used for ERImage data copying to another instance of an ERImage structure.

The input is the pointer to the ERImage structure instance to copy and the output is the pointer to the

ERImage structure instance to copy the data into.

IMPORTANT: The allocation of image_copy is done within the function before the data copying.

Example:

ERImage* image; // Image with source data
ERImage* image_copy = new ERImage(); // Destination image to copy the data into
// Deep copy of the image
int res = erImageCopy(image, image_copy);

erImageGetDataTypeSize

Returns the size of the specific ERImageDataType in bytes.

Specification:

unsigned int erImageGetDataTypeSize(ERImageDataType data_type);

Input:

• data_type

ERImageDataType to get the size of.

Returns:

• data type size – Size of one channel image element in bytes.

• 0 – Unknown ERImageDataType used.

Description:

The function erImageGetDataTypeSize() is used to get the size in bytes of the specific ERImageDataType

when used for image allocation. The input is the ERImageDataType value. The output is the value which

represents the number of bytes needed for storing one channel value of one pixel when a specific ERIm-

ageDataType is used.

Example:

unsigned int sizeUC = erImageGetDataTypeSize(ER_IMAGE_DATATYPE_UCHAR);
// sizeUC == sizeof(unsigned char)

unsigned int sizeF = erImageGetDataTypeSize(ER_IMAGE_DATATYPE_FLOAT);
// sizeF == sizeof(float)

erImageGetColorModelNumChannels

Returns the number of channels of the provided ERImageColorModel value.

Specification:

unsigned int erImageGetColorModelNumChannels(ERImageColorModel color_model);

Input:

• color_model

ERImageColorModel to get the number of channels.

Eyedea Recogniton, s.r.o.

ERImage Application Interface 20

Returns:

• number of channels – Number of channels of the supplied color model.

• 0 – Unknown or YCbCr ERImageColorModel used.

Description:

The function erImageGetColorModelNumChannels() is used to get the number of channels of the specific

ERImageColorModel. The input is the ERImageColorModel value. The output is the valuewhich represents

the number color model channels used when storing the image with specific ERImageColorModel.

IMPORTANT: For the ER_IMAGE_COLORMODEL_YCBCR* color model, zero is returned.

Example:

unsigned int numChannelsGRAY = erImageGetColorModelNumChannels}(ER_IMAGE_COLORMODEL_GRAY);
// numChannelsGRAY == 1

unsigned int numChannelsBGR = erImageGetColorModelNumChannels}(ER_IMAGE_COLORMODEL_BGR);
// numChannelsBGR == 3

unsigned int numPlanesYCBCR420 = erImageGetColorModelNumChannels}(ER_IMAGE_COLORMODEL_YCBCR420);
// numPlanesYCBCR420 == 0

erImageGetPixelDepth

Returns the size of a pixel in bytes for the supplied ERImageColorModel and ERImageDataType.

Specification:

unsigned int erImageGetPixelDepth(ERImageColorModel color_model, ERImageDataType data_type);

Input:

• color_model

Input ERImageColorModel for pixel depth computation.

• data_type

Input ERImageDataType for pixel depth computation.

Returns:

• depth of the pixel – Number of bytes needed to store one pixel using the specified color model

and data type.

• 0 – Unknown ERImageColorModel and/or ERImageDataType used.

Description:

The function erImageGetPixelDepth() is used to get the size of one pixel in bytes for the combination of

ERImageColorModel and ERImageDataType. The input is the ERImageColorModel and ERImageDataType

values. The output is the value which represents the size of one pixel in bytes when storing an image with

the supplied ERImageColorModel and ERImageDataType.

IMPORTANT: For the ER_IMAGE_COLORMODEL_YCBCR* color model, zero is returned.

Example:

unsigned int dUCGray = erImageGetPixelDepth(ER_IMAGE_COLORMODEL_GRAY , ER_IMAGE_DATATYPE_UCHAR);
// dUCGray == 1

unsigned int dFBGR = erImageGetPixelDepth(ER_IMAGE_COLORMODEL_BGR , ER_IMAGE_DATATYPE_FLOAT);
// dFBGR == 3*sizeof(float)

Eyedea Recogniton, s.r.o.

ERImage Application Interface 21

erVersion

Returns the version of the ERImage structure and all related image utilities.

Specification:

const char* erVersion(void);

Returns:

• version of the ERImage – String containing the version of the ERImage.

Description:

The function erVersion() is used to get the version of the ERImage structure and all related image utilities.

The function returns a string which contains the version number.

Example:

const char* version = erVersion();
std::cout << "ERImage␣version:␣" << version << std::endl;

erImageRead

Reads the image from a file, decodes it, and loads it into the supplied ERImage structure instance.

Specification:

int erImageRead(ERImage* image, const char* filename);

Input:

• image

Pointer to the ERImage structure instance to load the image into.

• filename

String containing the path to the image file to read.

Returns:

• 0 – Image successfully read.

• other – Error during image reading.

Description:

The function erImageRead() is used to read and decode the image from the given file and load it into

the supplied ERImage structure instance. The input is the pointer to the ERImage instance and the string

containing the path to the image file to open.

Supported image formats:

JPEG files *.jpeg, *.jpg, *.jpe

JPEG 2000 files *.jp2

Portable Network Graphics *.png

Windows bitmaps *.bmp, *.dib

TIFF files *.tiff, *.tif

Portable image format *.pbm, *.pgm, *.ppm *.pxm, *.pnm

Example:

char* filename = "./image.jpg"; // Image file path to read
ERImage* image = new ERImage(); //hrefi Initialize the ERImage
int res = erImageRead(image, filename); // Read the image

Eyedea Recogniton, s.r.o.

ERImage Application Interface 22

erImageWrite

Encodes and writes the image from the ERImage structure to a file.

Specification:

int erImageWrite(const ERImage* image, const char* filename);

Input:

• image

Pointer to the ERImage structure instance containing the image to write.

• filename

String containing the path to the image file to write.

Returns:

• 0 – Image successfully written.

• other – Error during image writing.

Description:

The function erImageWrite() is used to encode and write the image to the given file from the ERImage

structure instance. The input is the pointer to the ERImage instance and the string containing the path to

the image file to write. Output image format is automatically selected from the filename extension with

respect to the table of supported formats in the erImageRead chapter.

Example:

char* filename = "./image.jpg"; // Image file path to write
ERImage* image; // ERImage containing the image to write
int res = erImageWrite(image, filename); // Write the image

erImageFree

Frees the whole ERImage structure instance.

Specification:

void erImageFree(ERImage* image);

Input:

• image

Pointer to the ERImage structure instance to delete.

Description:

The function erImageFree() is used to free the image data arrays contained in the ERImage structure in-

stance and also to set all the property fields to 0. The input is the pointer to the ERImage instance you

wish to free.

IMPORTANT: The function DOES NOT delete the ERImage instance pointer because the user creates

the pointer.

Example:

erImageAllocate(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY , ER_IMAGE_DATATYPE_UCHAR);
// ...
erImageFree(image); // every field in the image structure is freed and set to NULL or 0

Eyedea Recogniton, s.r.o.

ER Types 23

4 ER Types
The purpose of the er_types.h header file is to define common C data structures and enumerations used

in Eyedea Recognition’s libraries for computer vision and image processing.

4.1 Enumerators
ERComputationMode

ERComputationMode defines the different modes of computation that can be used. The mode is used in

the SDK instance initialization to specify the mode in which the SDK instance computation will operate on.

• ER_COMPUTATION_MODE_GPU = 0

CPU is exclusively used for all computations inside the SDK instance.

• ER_COMPUTATION_MODE_GPU = 1

The most expensive computations are processed on the computer’s GPU (graphics processing unit),

which gives significant processing speed-up. This functionality is available in the GPU version of the

SDK only. For NVIDIA Jetson, OpenGL is used, for all other release packs OpenCL capable GPU is

required.

• ER_COMPUTATION_MODE_TPU = 2

Reserved enumeration for computation on specialized hardware (Tensor Processor Unit)

4.2 Structures
ERPoint2i

typedef struct {
int x;
int y;

} ERPoint2i;

ERPoint2i defines 2D coordinates of a pixel in an image specified by its index cordinates x and y.

ERPoint2f (ERPoint)

typedef struct {
float x;
float y;

} ERPoint2f;

ERPoint2f defines 2D floating point coordinate.

ERRoI

typedef struct {
int x;
int y;
int width;
int height;

} ERRoI;

This structure defines a region of interest (ROI) within an image. The ROI is defined by top-left corner

coordinates and its size. It is possible define ROI starting outside of the image using negative values of x,y

or define “full” width, height with respect to the image by negative values. The ERRoI has following fields:

Eyedea Recogniton, s.r.o.

ER Types 24

• x

the x-coordinate (index) of the top left pixel of the ROI.

• y

the y-coordinate (index) of the top left pixel of the ROI

• width

the width of the ROI. A negative value means the ROI should cover the full width of the image.

• height

the height of the ROI. A negative value means the ROI should cover the full height of the image.

ERRotatedRect

typedef struct {
float x;
float y;
float width;
float height;
float angle;

} ERRotatedRect;

This structure defines a rotated rectangle in a 2D coordinate system by its mass center, width, height and

angle of rotation. The ERRotatedRect has following fields:

• x

the x-coordinate (index) of the mass center.

• y

the y-coordinate (index) of the mass center.

• width

the width of the rectangle

• height

the height of the rectangle

• angle

the clockwise rotation angle (in degrees) of the rectangle. When the angle is 0, 90, 180, 270 etc., the

rectangle becomes an up-right rectangle.

4.3 Functions
erRotatedRectToPoints

Helper function to convert ERRotatedRect structure to ERPoint2f [4] array. The function returns corner

points of the rotated rectangle in clockwise direction starting with top-left corner.

Specification:

int erRotatedRectToPoints(const ERRotatedRect* rect, ERPoint2f (*points)[4]);

Inputs:

• rectPointer to the ERRotatedRect structure

• pointsAllocated array of ERPoint2f structure with at least 4 elements.

Returns:

• 0 – On success.

• other – Error during conversion.

Eyedea Recogniton, s.r.o.

SDK Application Interface 25

5 SDK Application Interface
This chapter describes all the parts of the SDK’s public application interface for C/C++ programming lan-

guage including defined Structures and all available Functions. It gives developer detailed overview of the

SDK and helps to orientate during SDK integration.

ERImage structure and imagemanipulation functions are described in section ERImage. Examples ofMMR

SDK usage are in Examples section.

5.1 Structures
Document section Structures covers all the information about structures used in the SDK’s public appli-

cation interface. EdfInitConfig is used during the SDK initialization, EdfDescriptor stores the unique de-

scription of the specified object, EdfPoints, EdfValues and EdfCropParams are used during input image

preparation, EdfClassifyResultValue and EdfClassifyResult store the results of the classification process, Ed-

fCropImageConfig specifies the configuration of the input image cropping, EdfComputeDescConfig spec-

ifies the configuration of the descriptor computation and EdfClassifyConfig specifies the configuration of

the descriptor classification.

EdfInitConfig

typedef struct {
const char* module_path;
const char* model_file;
ERComputationMode computation_mode;
int gpu_device_id;
int num_threads;

} EdfInitConfig;

EdfInitConfig represents the configuration parameters set used during SDKmodule initialization. The struc-

ture contains following fields:

• module_path

NULL terminated string with the path to the module.

Example: “C:/folder/Eyedea-MMR-2.24/sdk/modules/edftf2lite/”

• model_file

NULL terminated string with model filename.

Example: “MMR_VCMMCT_PREC_2024Q4.dat” or “MMRBOX_VCMMGVCT_FAST_2024Q4.dat”.

• computation_mode

Selected computation mode from ERComputationMode enumerator..

• gpu_device_id

Zero based integer representing GPU device identifier. Use “tools/gpu-devices” to list available GPUs

and their IDs.

(used only when computation_mode == ER_COMPUTATION_MODE_GPU)

• num_threads

Sets the number of threads used by the module’s backend. The number of threads is used in all

computation modes, for GPU and TPU mode, only affects CPU code blocks.

Set to -1 to use std::thread::hardware_concurrency value (number of virtual CPU cores).

Set to >1 to usemin(num_threads, std::thread::hardware_concurrency).

Others (<=1 except -1) initializes backend in a single thread (default).

Eyedea Recogniton, s.r.o.

SDK Application Interface 26

EdfDescriptor

typedef struct {
unsigned int version;
unsigned int size;
unsigned char* data;

} EdfDescriptor;

EdfDescriptor contains the data which describes the recognized object. The data is called the descriptor,

which is generated as the output of the machine learning algorithms. The advantage of this approach is

that the descriptor is usually smaller than the input image and it is easier and more efficient to compare

the descriptors than the input images. The structure contains following fields:

• version

Version of the binary model used for the descriptor computation.

• size

Size of the descriptor data in bytes.

• data

The descriptor data.

EdfPoints

typedef struct {
int length;
double* rows;
double* cols;

} EdfPoints;

EdfPoints contains the 2D points defined by the row (y-axis) and column (x-axis) coordinates. The structure

contains following fields:

• length

Number of the contained 2D points.

• rows

Pointer to the array containing the row (y-axis) coordinates of the 2D points.

• cols

Pointer to the array containing the column (x-axis) coordinates of the 2D points.

EdfValues

typedef struct {
int length;
double* values;

} EdfValues;

EdfValues contains real value array. The structure contains following fields:

• length

Number of contained real values.

• values

Pointer to the array containing the real values.

Eyedea Recogniton, s.r.o.

SDK Application Interface 27

EdfCropParams

typedef struct {
EdfPoints points;
EdfValues values;

} EdfCropParams;

EdfCropParams contains the parameters used for image cropping with the function edfCropImage. The

contained parameters are internally stored in the EdfPoints and EdfValues structures. To fill this structure,

use macros defined in edf_type_mmr.h. See subsection Cropping the Input Image of Examples section for

more info. The structure contains following fields:

• points

Instance of the EdfPoints structure.

• values

Instance of the EdfValues structure.

EdfClassifyResultValue

typedef struct {
char* task_name;
unsigned int task_name_length;
char* class_name;
unsigned int class_name_length;
int class_id;
float score;

} EdfClassifyResultValue;

EdfClassifyResultValue represents the classification result value. The result value contains the name of the

task (classifier name) and name of the class with the ID and the highest score. The structure contains

following fields:

• task_name

NULL terminated string containing the name of the classified task.

• task_name_length

Length of the task_name string without the terminating NULL character.

• class_name

NULL terminated string containing the name of the resulting class.

• class_name_length

Length of the class_name string without the terminating NULL character.

• class_id

Identifier of the resulting class.

• score

Classification score of the resulting class.

EdfClassifyResult

typedef struct {
unsigned int num_values;
EdfClassifyResultValue* values;

} EdfClassifyResult;

EdfClassifyResult contains the array with the EdfClassifyResultValue values as the result of the classification

using the function edfClassify. The structure contains following fields:

Eyedea Recogniton, s.r.o.

SDK Application Interface 28

• num_values

Number of the contained EdfClassifyResultValue values.

• values

Array containing the EdfClassifyResultValue values.

EdfCropImageConfig

typedef struct {
int full_crop;
int color_normalization;
int use_antialiasing;
unsigned int antialiasing_kernel_size;
float antialiasing_sigma;

} EdfCropImageConfig;

EdfCropImageConfig is used for image cropping configuration in the function edfCropImage. Use this con-

figuration only if you know what you are doing. The structure contains following fields:

• full_crop

Specifies whether the image is returned with the boundary. (Default: 0)

Set to 1 to create the full crop (with the border) – FOR DEBUGGING ONLY.

Set to 0 to create default crop.

Set to -1 to create standard crop – FOR DEBUGGING ONLY.

• color_normalization

Specifies whether the color normalization is applied. (Default: 1)

Set to 1 to use color normalization – FOR DEBUGGING ONLY.

Set to 0 to use color normalization default setting.

Set to -1 to not use color normalization – FOR DEBUGGING ONLY.

• use_antialiasing

Specifies whether the antialiasing procedure is applied during the image transformation.

Set to 1 to use antialiasing during image transformation – FOR DEBUGGING ONLY.

Set to 0 to use antialiasing default setting.

Set to -1 to not use antialiasing during image transformation – FOR DEBUGGING ONLY.

(Default antialiasing setting is loaded from the binary model and is specified for each task.)

IMPORTANT: The antialiasing option can significantly improve recognition results, especially in

the cases when the scale change during the cropping is high and aliasing occurs in the cropped

image. Cropping time can be significantly higher with antialiasing option enabled. It is caused

by image filtering which is computationally expensive. The computation time depends on the

scale change during the cropping and on the size of the image area to be cropped.

• antialiasing_kernel_size

The size of the convolution kernel used during antialiasing.

Set to 0 to use the default convolution kernel size (computed from transformation scale).

Used only in combination with use_antialiasing == 1. (Default: 0)

FOR DEBUGGING ONLY.

• antialiasing_sigma

The sigma parameter of the Gaussian distribution in the antialiasing convolution kernel.

Set to 0.0f to use the default sigma size (computed from kernel size).

Used only in combination with use_antialiasing == 1. (Default: 0.0f)

FOR DEBUGGING ONLY.

Eyedea Recogniton, s.r.o.

SDK Application Interface 29

EdfComputeDescConfig

typedef struct {
unsigned int batch_size;

} EdfComputeDescConfig;

EdfComputeDescConfig configures the descriptor computation in the function edfComputeDesc. The struc-

ture contains following fields:

• batch_size

The size of the descriptors batch to compute.

IMPORTANT: The advantage of the batch descriptor computation is the speed of the processing

where the batch processing can be faster than sequential on some system configurations (espe-

cially when using GPU computation mode).

To use the batch descriptor computation in the function edfComputeDesc(), the input image

crops must be stored in the memory consecutively (like in an array or a vector). In the same

waymust be initialized the memory for storing the computed descriptors.

IMPORTANT: Setting batch_size is not allowed in SDK 2.24 version.

Set to 0 to disable batch processing.

Set to 1-N to set the size of the batch (value 1 has the same effect as 0).

Example:

std::vector<EdfImage> imageCrops = { imageCrop1, imageCrop2, imageCrop3, imageCrop4 };
std::vector<EdfDescriptor> descriptors;
descriptors.resize(imageCrops.size());
EdfComputeDescConfig compDescConfig;
compDescConfig.batch_size = (unsigned int)imageCrops.size();
edfAPI.edfComputeDesc(&imageCrops[0], module_state, &descriptors[0], &compDescConfig);

EdfClassifyConfig

typedef struct {
int use_dependency_rules;

} EdfClassifyConfig;

EdfClassifyConfig is used for descriptor classification configuration in the function edfClassify. Use this

configuration only if you know what you are doing. The structure contains following field:

• use_dependency_rules

Specifies whether the dependency rules between the classifiers are applied. (Default: 0)

When the dependency rules are not applied, task_name field in returned classification output struc-

ture EdfClassifyResultValue contains string with _NODEP suffix.

Set to 0 to get classification results with dependency rules applied.

Set to 1 to get classification results both with and without dependency rules applied.

Set to -1 to get classification results without dependency rules applied.

FOR DEBUGGING ONLY.

Eyedea Recogniton, s.r.o.

SDK Application Interface 30

5.2 Functions
This chapter contains the definition of the MMR SDK library functions which are present in the public

API. The chapter is divided into five parts. First describes the main API functions, the other refers to the

functions designed for the manipulation with the API public data structure EdfCropParams.

IMPORTANT: The MMR SDK library is not thread safe. Do not call the library instance from multiple

threads but initialize an instance of the library for each thread separately.

5.2.1 Main API
This part defines the API functions which are designed to control the main part of the Eyedentify recogni-

tion library. The functions are: edfInitEyedentify, edfFreeEyedentify, edfCropImage, edfComputeDesc, edf-

CompareDescs, edfClassify, edfModelVersion, edfAllocDesc, edfFreeDesc, edfFreeCropImage, edfFreeClas-

sifyResult. These functions are defined in the edf.h file.

edfInitEyedentify

Initializes the Eyedentify module using supplied parameters.

Specification:

int edfInitEyedentify(const EdfInitConfig* init_config, void** module_state)

Inputs:

• init_config

EdfInitConfig structure containing the parameters needed for initialization.

Outputs:

• module_state

Pointer to the successfully initialized MMR SDK module instance.

Returns:

• 0 – Initialization was successful

• other – errno value or -1 for other errors.

Description:

The function edfInitEyedentify() is used for initialization of the MMR SDK module. The initialization is re-

quired to be able to use the library for recognition tasks. The input of the function call is the structure

EdfInitConfig and the output is the error code and the pointer to the initialized module.

IMPORTANT: It is not possible to mix CPU and GPU computation mode in one process. Only one

computation mode can be initialized within the process at a time.

IMPORTANT: The initialization of Eyedentify module must be done in the same thread which will run

the module. Only one initialization function must be executed at a time in a single process, which

requires mutexing. No other SDK function can be executed while MMR SDK module initialization is in

progress in any thread.

Eyedea Recogniton, s.r.o.

SDK Application Interface 31

GPU version only: To initialize the GPU version of the library, the ID of the GPU hardware must be

supplied. The ID of the GPU is zero-based number. To get the list of the installed devices on your

system, command line utility “[EyedentifySDK]/tools/gpu-devices” can be used. If only one GPU is

installed ID 0 is used for initialization. Do not forget you can also have an integrated GPU on your

system and always verify whether the correct GPU is used using e.g., a Task Manager, nvidia-smi, or

similar GPU utilization measurement tool.

Example:

void* module_state = NULL;
EdfInitConfig initConfig;
initConfig.module_path = EDF_MODULE_PATH;
initConfig.model_file = MODEL_NAME;
initConfig.computation_mode = ER_COMPUTATION_MODE_CPU;
initConfig.gpu_device_id = 0;
initConfig.num_threads = 1;
int initResult = edfInitEyedentify(&initConfig, &module_state);
if (initResult != 0) {

// Handle errors
}

edfFreeEyedentify

Frees initialized Eyedentify module.

Specification:

void edfFreeEyedentify(void** module_state)

Inputs:

• module_state

Pointer to the pointer to the initialized MMR SDK module instance.

Description:

The function edfFreeEyedentify() is used for freeing the Eyedentify module. When the module is not

needed anymore, for example at the end of the program, all underlying structures must be deallocated.

The input of the function call is the pointermodule_state, which was created using edfInitEyedentify func-

tion during module initialization.

IMPORTANT:Always free themodulewhen it is not needed anymore otherwise your programwill have

memory leaks. Freeing the module in Sentinel LDK protected version frees the license key allocation.

Example:

void* module_state = NULL;
edfInitEyedentify(&initConfig, &module_state);
// ...
edfFreeEyedentify(&module_state);

edfCropImage

Prepares/crops the input image for processing.

Specification:

int edfCropImage(const ERImage* image_in, EdfCropParams* params, void* module_state,
ERImage* cropped_image, EdfCropImageConfig* config)

Inputs:

• image_in

Input image stored in the ERImage structure.

Eyedea Recogniton, s.r.o.

SDK Application Interface 32

• params

Pointer to the cropping parameters stored in the EdfCropParams structure.

• module_state

Pointer to the initialized MMR sDK module instance.

• config

Cropping configuration parameters stored in the EdfCropImageConfig structure.

For default configuration set to NULL.

Outputs:

• cropped_image

Pointer to the successfully cropped and transformed image in the ERImage.

Returns:

• 0 – Cropping was successful.

• other – errno value or -1 for other errors.

Description:

The function edfCropImage() crops and transforms the input image according to the input cropping param-

eters, MMR SDK module and binary model requirements. It is used before the function edfComputeDesc

to prepare the input image for the descriptor computation. The input of the function call is the pointer

to the input image structure ERImage, void pointermodule_state, cropping parameters defined using Ed-

fCropParams structure and the cropping configuration in the EdfCropImageConfig structure. Specification

of the configuration is optional, for default configuration use NULL pointer. The output is the error code

and the pointer to the ERImage structure containing cropped image. Cropping parameters defined in the

EdfCropParams structure are dependent on the MMR SDK module and recognition task. They allow to

define 2D points and double values. For more detailed information see the Examples chapter and the ex-

ample source codes included in the SDK package. The function edfCropImage() must be called for specific

module.

Example:

// License plate-based crop
EdfCropParams cropParams;
edfCropParamsAllocate(1, 2, &cropParams);
cropParams.points.cols[0] = 123.4;
cropParams.points.rows[0] = 56.7;
cropParams.values.values[0] = 8.9;
cropParams.values.values[1] = 0.0;

ERImage cropImage;
int cropResult = edfCropImage(&image, &cropParams, module_state, &cropImage, NULL);
if (cropResult != 0) {

// Handle errors
}

Example:

// Bounding box-based crop
EdfCropParams cropParams;
edfCropParamsAllocate(2, 0, &cropParams);
cropParams.points.cols[0] = 123.4;
cropParams.points.rows[0] = 56.7;
cropParams.points.cols[1] = 453.8;
cropParams.points.rows[1] = 230.5;

ERImage cropImage;
int cropResult = edfCropImage(&image, &cropParams, module_state, &cropImage, NULL);
if (cropResult != 0) {

// Handle errors
}

Eyedea Recogniton, s.r.o.

SDK Application Interface 33

edfComputeDesc

Computes descriptor from input image cropped by edfCropImage function.

Specification:

int edfComputeDesc(const ERImage* img, const void* module_state,
EdfDescriptor* descriptor, EdfComputeDescConfig* config)

Inputs:

• img

Input image cropped by edfCropImage function.

• module_state

Pointer to the initialized MMR SDK module instance.

• config

Descriptor computation configuration in EdfComputeDescConfig structure.

For default configuration set to NULL.

Outputs:

• descriptor

Descriptor raw data and metadata saved in the EdfDescriptor structure.

Returns:

• 0 – Computation was successful.

• other – errno value or -1 for other errors.

Description:

The function edfComputeDesc() is used formachine learningmethod descriptor computation. The descrip-

tor contains information describing input image in the condensed form, which is designed for efficient clas-

sification and matching. The input of the function call is the pointer to the cropped input image structure

ERImage created with edfCropImage, void pointer module_state, which was created using edfInitEyeden-

tify function during module initialization and the computation configuration in the EdfComputeDescConfig

structure. Specification of the configuration is optional, for default configuration use NULL pointer. The

output is the error code and the pointer to the EdfDescriptor structure.

IMPORTANT:Descriptor computation is themost time and resource consuming process which can last

from tens to hundreds of milliseconds on standard x86 computer, depending on the recognition task

complexity.

Example:

edfCropImage(&image, &cropParams, module_state, &cropImage, NULL);
// ...
EdfDescriptor descriptor;
int computeDescResult = edfComputeDesc(cropImage, module_state, &descriptor, NULL);
if (computeDescResult != 0) {

// Handle errors
}

edfCompareDescs

Compares two descriptors and returns similarity score. Typically not used in standard scenarios.

Specification:

int edfCompareDescs(const EdfDescriptor* desc_A, const EdfDescriptor* desc_B,
void const* module_state, float* score)

Eyedea Recogniton, s.r.o.

SDK Application Interface 34

Inputs:

• desc_A

First descriptor for comparison stored in the EdfDescriptor structure.

• desc_B

Second descriptor for comparison stored in the EdfDescriptor structure.

• module_state

Pointer to the initialized MMR SDK module instance.

Outputs:

• score

Pointer to the float where similarity score is saved on success.

Returns:

• 0 – Comparison was successful.

• other – errno value or -1 for other errors.

Description:

The function edfCompareDescs() compares two descriptors generated by edfComputeDesc with the same

MMR SDKmodule and same binary model. Comparison function is not defined generally but is dependent

on selected recognition task. The result of the comparison is a similarity score. For the similarity score the

following rule is valid: the higher the score is the more similar two descriptors are. The similarity score

minimal and maximal possible values are dependent on the MMR SDK module, binary model and on the

recognition task, therefore cannot be defined in general. Typically theywould be in range 0.0-1.0, although

numerical precision can cause the value to be outside of this range. The input of the function call are the

pointers to the descriptors to compare and the void pointer module_state. The output is the error code

and the pointer to the similarity score stored as float.

IMPORTANT: The function edfCompareDescs() requires the data in the EdfDescriptor structure to be

stored in the data field which points to the aligned memory, because SSE instructions are used for

computation speedup. To ensure that the memory is aligned, use edfComputeDesc or edfAllocDesc

functions for descriptor allocation.

Example:

edfComputeDesc(cropImageA, module_state, &descA, NULL);
edfComputeDesc(cropImageB, module_state, &descB, NULL);
// ...
float score = 0.0f;
int compareResult = edfCompareDescs(&descA, &descB, module_state, &score);
if (compareResult != 0) {

// Handle errors
}

edfClassify

Classifies descriptor to the classes defined in the binary model.

Specification:

int edfClassify(const EdfDescriptor* desc, void* module_state,
EdfClassifyResult** classify_result, EdfClassifyConfig* config)

Inputs:

• desc

Descriptor for classification stored in the EdfDescriptor structure.

• module_state

Pointer to the initialized MMR SDK module instance.

Eyedea Recogniton, s.r.o.

SDK Application Interface 35

• config

Descriptor classification configuration in EdfClassifyConfig structure.

For default configuration set to NULL.

Outputs:

• classify_result

Double pointer to the EdfClassifyResult, where classification result is saved on success.

Returns:

• 0 – Classification was successful.

• other – errno value or -1 for other errors.

Description:

The function edfClassify() classifies the descriptor to the classes defined in the binarymodel for the specific

recognition task. The result of the classification is the name and the ID of one or more classes to which the

object specified by the descriptor belongs. The input of the function call is the pointer to the descriptor

to classify and the void pointer module_state and the classification configuration in the EdfClassifyConfig

structure. Specification of the configuration is optional, for default configuration use NULL pointer. The

output is the error code and the double pointer to the classification result stored in the EdfClassifyResult

structure.

Example:

edfComputeDesc(cropImage, module_state, & descriptor, NULL);
// ...
EdfClassifyResult* classify_result = NULL;
int resultCode = edfClassify(&descriptor, module_state, &classify_result, NULL);
if (resultCode == 0) {

// Print the results to the console
for (unsigned int i = 0; i < classify_result->num_values; i++) {

char* task_name = classify_result->values[i].task_name;
char* class_name = classify_result->values[i].class_name;
int class_id = classify_result->values[i].class_id;
float score = classify_result->values[i].score;
std::cout << task_name << ":␣" << class_name << "(" << class_id << ")" <<

std::endl;
std::cout << "Score:␣" << score << std::endl;

}
} else {

// Handle errors
}

edfModelVersion

Returns the version of the loaded binary model (.DAT file).

Specification:

unsigned int edfModelVersion(const void* module_state)

Inputs:

• module_state

Pointer to the initialized MMR SDK module instance.

Returns:

Function returns the model version on success, otherwise 0 is returned.

Description:

The function edfModelVersion() is used for getting the version of the loaded binary model. The version is

the date of the binary model in the format “YYYYMMDD”. The input of the function call is the void pointer

Eyedea Recogniton, s.r.o.

SDK Application Interface 36

module_state. The output is the version number or 0 on an error.

Example:

void* module_state = NULL;
edfInitEyedentify(&initConfig, &module_state);
// ...
int modelVersion = edfModelVersion(module_state);
if (modelVersion == 0) {

// Handle errors
}

edfAllocDesc

Allocates the EdfDescriptor structure.

Specification:

void edfAllocDesc(EdfDescriptor* desc, unsigned int size, unsigned int version)

Inputs:

• desc

Pointer to the initialized EdfDescriptor structure instance.

• size

Size of the descriptor data to be allocated in bytes.

• version

Version of the binary model used for descriptor computation (see edfModelVersion).

Description:

The function edfAllocDesc() is used for allocating descriptor structure EdfDescriptor. Function is used in the

cases when the descriptor data are loaded from the external storage, because functions edfCompareDescs

and edfClassify requires aligned memory for the descriptor. The input of the function call is the pointer to

the EdfDescriptor, size of the data in bytes and the version number.

Example:

char* desc_data; // Data loaded from external storage
EdfDescriptor* descriptor = new EdfDescriptor();
edfAllocDesc(descriptor, desc_size, desc_version);
memcpy(descriptor->data, desc_data, desc_size);

edfFreeDesc

Frees the descriptor EdfDescriptor structure.

Specification:

void edfFreeDesc(EdfDescriptor* desc)

Inputs:

• desc

Pointer to the initialized EdfDescriptor structure instance.

Description:

The function edfFreeDesc() is used for freeing the allocated descriptor structure EdfDescriptor. This special

function is required to correctly free the descriptor’s aligned memory. The input of the function call is the

pointer to the allocated EdfDescriptor.

IMPORTANT: The function DOES NOT delete the EdfDescriptor pointer because the user creates the

pointer.

Eyedea Recogniton, s.r.o.

SDK Application Interface 37

Example:

EdfDescriptor* descriptor = new EdfDescriptor();
edfAllocDesc(descriptor, desc_size, desc_version);
// ...
edfFreeDesc(descriptor);
delete descriptor;

edfFreeCropImage

Frees the ERImage structure from the edfCropImage function.

Specification:

Example:

void edfFreeCropImage(void* module_state, ERImage* cropped_image)

Inputs:

• module_state

Pointer to the initialized MMR SDK module instance.

• cropped_image

Pointer to the ERImage structure instance created using edfCropImage function.

Description:

The function edfFreeCropImage() is used for freeing the allocated image structure ERImage created using

function edfCropImage. The input of the function is the pointer to the module which cropped the image

and the pointer to the allocated ERImage.

IMPORTANT: The function DOES NOT delete the ERImage structure pointer because the user creates

the pointer.

Example:

ERImage cropImage;
edfCropImage(&image, &cropParams, module_state, &cropImage, NULL);
// ...
edfFreeCropImage(module_state, &cropImage);

edfFreeClassifyResult

Frees the EdfClassifyResult structure from the edfClassify function.

Specification:

int edfFreeClassifyResult(EdfClassifyResult** classify_result, void* module_state)

Inputs:

• classify_result

Double pointer to the EdfClassifyResult structure instance created using edfClassify function.

• module_state

Pointer to the initialized MMR SDK module instance.

Returns:

• 0 – Freeing was successful.

• other – errno value or -1 for other errors.

Description:

The function edfFreeClassifyResult() is used for freeing the allocated structure EdfClassifyResult created

using function edfClassify. The input of the function is the double pointer to the allocated EdfClassifyResult

Eyedea Recogniton, s.r.o.

SDK Application Interface 38

and the void pointermodule_state.

IMPORTANT: The function DOES delete the EdfClassifyResult pointer because the pointer is created

by the edfClassify function.

Example:

EdfClassifyResult* classify_result = NULL;
edfClassify(&descriptor, module_state, &classify_result, NULL);
// ...
edfFreeClassifyResult(&classify_result, module_state);

5.2.2 EdfCropParams
This part defines the API functions which are designed to work with the EdfCropParams structure:

• Allocation: edfCropParamsAllocate

• Wrapping: edfCropParamsWrap

• Freeing: edfCropParamsFree

These functions are defined in the edf_utils.h file.

edfCropParamsAllocate

Allocates EdfCropParams structure content.

Specification:

void edfCropParamsAllocate(int size_points, int size_values, EdfCropParams* params);

Inputs:

• size_points

Number of points to allocate.

• size_values

Number of values to allocate.

• params

Pointer to the EdfCropParams structure instance.

Description:

The function edfCropParamsAllocate() is used to allocate the cropping parameters contained in the Ed-

fCropParams structure instance. The input is the size of the points and values to allocate and the pointer to

the EdfCropParams structure instance. The required setup is described in Examples and in edf_type_mmr.h

header file.

Example:

EdfCropParams* params = new EdfCropParams();
edfCropParamsAllocate(1, 2, params);
params->points->rows[0] = 12.3;
params->points->cols[0] = 45.6;
params->values->values[0] = 12.3;
params->values->values[1] = 0.0;

edfCropParamsWrap

Wraps EdfCropParams structure over the data arrays.

Specification:

void edfCropParamsWrap(int size_points, double* rows, double* cols,
int size_values, double* values_data, EdfCropParams* params);

Eyedea Recogniton, s.r.o.

SDK Application Interface 39

Inputs:

• size_points

Number of points to wrap.

• rows

Pointer to the row (y-axis) point data to wrap.

• cols

Pointer to the column (x-axis) point data to wrap.

• size_values

Number of values to wrap.

• values_data

Pointer to the values data to wrap.

• params

Pointer to the EdfCropParams structure instance.

Description:

The function edfCropParamsWrap() is used to wrap the EdfCropParams structure instance over the sup-

plied data arrays. The input is the size of the points, the pointers to the 2D points data arrays to wrap, the

size of the values, the pointers to the values data arrays to wrap and the pointer to the EdfCropParams

structure instance.

Example:

double* rows = {12.3, 45.6};
double* cols = {78.9, 10.0};
double* values_data = {12.3, 45.6};

EdfCropParams* params = new EdfCropParams();
edfCropParamsWrap(2, rows, cols, 2, values_data, params);

edfCropParamsFree

Frees the EdfCropParams structure content.

Specification:

void edfCropParamsFree(EdfCropParams* params);

Inputs:

• params

Pointer to the EdfCropParams structure instance.

Description:

The function edfCropParamsFree() is used to free the 2D points and values data arrays contained in the

EdfCropParams structure instance. The input is the pointer to the EdfCropParams instance.

IMPORTANT: The function DOES NOT delete the EdfCropParams instance pointer because the user

creates the pointer.

Example:

EdfCropParams* params = new EdfCropParams();
edfCropParamsAllocate(2, 0, params);
// ...
edfCropParamsFree(params);
delete params;

Eyedea Recogniton, s.r.o.

MMR Results 40

6 MMR Results
This Chapter will explain the output of edfClassify function, stored in EdfClassifyResult and values returned

inside its internal EdfClassifyResultValue array.

In MMR SDK, the results can vary based on software license. For example, your license might be limited

to return road user’s category and make only, so you will not receive results regarding model, generation,

and variation. The license is enforced via usage of specific binary module. Technical Sheet will give you full

details on binary modules and the classification tasks they support.

6.1 EdfClassifyResult and EdfClassifyResultValue
This structure holds an array of EdfClassifyResultValuewith size num_values. You need to iterate the array

to get results for each task. A task is a classification query, in MMR possible tasks and their respective clas-

sifier names are view, category, make, model, generation, variation, color and multiple tags inside tag_*.

The task is returned in task_name variable of each EdfClassifyResultValue. You need to iterate the EdfClas-

sifyResult and look for the result you want to process.

Each binarymodule has an accompanying filewith information regarding the possible values it can produce.

All the files are present in the same directory as the binary modules themselves, [EyedeaMMR]/sdk/mod-

ules/edftf2lite/model/ or [EyedeaMMR]/sdk/modules/edftrt/model/ depending on the backend used.

The accompanying files are present in the form of CSV in the *.csv file and also in a JSON format in *.info

file, where the star symbol represent the filename of the *.dat file in use. The values produced consist of a

string with name of the class, stored in class_name and the unique ID of the class, stored in class_id. Users

are encouraged to use the unique IDs as stable identifiers, as the names can sometimes change between

releases. The IDs can also change in a situationwhere amistake has been fixed or a new vehicle is available

in the market with the same visual appearance as another vehicle already present, however this situation

is very rare and typically occurs only in generation and variation tasks.

When a classification result would violate its predecessor, the result is not returned and the value is empty.

For example if the system would classify vehicle as “Ford Golf”, the MMR SDK will return “Ford” only,

discarding “Golf”.

Eyedea Recogniton, s.r.o.

MMR Results 41

6.2 Task View
Returns road user’s positional information, i.e. whether the road user is seen from the front, the side or

the rear.

6.3 Task View8
Returns road user’s positional information with increased specificity to 8 classes. Compared to the view

task, this task is more detailed and can be used to distinguish between more specific views of the road

user. Only available in case of using bounding box detection as input. The classes are defined as follows:

View8 Class View8 Short

Name

View Base

Class

Description

frontal exact F. frontal Frontal view, does not allow to see sides of the ve-

hicle clearly. Typically -10° to 10°.

frontal+left FL frontal Frontal view, allows to also see left side of the ve-

hicle. Typically -10° to -80°.

frontal+right FR frontal Frontal view, allows to also see right side of the

vehicle. Typically 10° to 80°.

left .L side Left side view, does not allow to see front or rear

of the vehicle. Typically -80° to -100°.

right .R side Right side view, does not allow to see front or rear

of the vehicle. Typically 80° to 100°.

rear exact R. rear Rear view, does not allow to see sides of the vehi-

cle clearly. Typically 170° to 190°.

rear+left RL rear Rear view, allows to also see left side of the vehi-

cle. Typically 100° to 170°.

rear+right RR rear Rear view, allows to also see right side of the vehi-

cle. Typically 190° to 260°.

Eyedea Recogniton, s.r.o.

MMR Results 42

6.4 Task Category
Category results are defined by considering United Nations Resolution R.E.3 (Consolidated Resolution on

the Construction of Vehicles), also other road users are returned as category value, for example PEDES-

TRIAN class. The transposition is as defined in the following table:

MMR SDKName MMR SDK ID R.E.3 Class Description

ANIMAL 20 — Animals or animals with riders.

BUS 1 M3 Buses.

CAR 2 M1 Personal cars, incl. pickups.

CYCLE 11 — Bicycles.

HVT 4 N3 Trucks exceeding 12t.

KICKBIKE 21 — Kickbikes and kick scooters, including e-scooters.

LGT 5 N2 Trucks over 3.5t but not exceeding 12t.

LUGGAGE 23 — Luggage, to identify pedestrians with luggage.

MTB 6 L* Motorbikes, Tricycles, Quadbikes.

PEDESTRIAN 16 — Pedestrians.

SPECIAL 14 T, R, S Industrial machines, agricultural tractors.

TO12 10 O1 or O2 Small trailers.

TO34 13 O3 or O4 Large trailers, >3.5t.

TROLLEY 22 — Trolleys and prams. To identify pedestrians push-

ing trolleys.

TRUCK 12 O3, O4 or

N2, N3

Helper class for LGT, HVT and TO34, when these

cannot be distinguished. Trucks or large trailers

from rear view (LP) or rear exact view (BOX).

VAN 9 N1, M2 Vehicles for the carriage of goods under 3.5t or

minibus (typically same visual appearance).

For non-vehicles and non-motorized vehicles, category is based on appearance. This applies to ANIMAL,

CYCLE, KICKBIKE, LUGGAGE, TROLLEY. For motorized vehicles, the category is defined based on vehicle

model. That means that when a vehicle model can appear in two categories, theMMR SDKwill return only

the most probable category. There are basically two cases, either a CAR vs VAN case, when manufacturer

makes the same vehicle available as personal car and minivan (we classify this typically as CAR), and case

number two, where manufacturers create the same model of van as under 3.5t and over 3.5t (we classify

this typically as VAN). It is not possible to recognize which one of the maximum masses the vehicle has

from image only. Thus, we report the most probable class, based on internal weight data. You can verify

for each vehicle model which category is expected to be returned in the binary module accompanying file.

Not all categories are available from all views, please see Technical Sheet for details.

6.5 Task Make
For vehicles only. This task represents classification of the name of the brand. Brand name can be re-

turned as the name used in marketing or its shortcut instead of the full legal name. Please see the binary

module accompanying file for the list of possible car maker names. For example, instead of “Mazda Motor

Corporation” we return “Mazda”, and instead of “Volkswagen Aktiensgesellschaft” we return “VW”.

Make recognition is not supported for ANIMAL, CYCLE, KICKBIKE, LUGGAGE, MTB, PEDESTRIAN, TO12,

TO34, TROLLEY AND TRUCK. Also from side views, only category is recognized.

Eyedea Recogniton, s.r.o.

MMR Results 43

There exist such vehicles which were produced by several car makers with only minor changes to the ex-

terior, or no changes at all. Some vehicles only differ by brand logo, which is often missing in the rear of

the vehicle. In that case, the MMR SDK returns only the most probable vehicle make, but the error rate

might be high. There are two typical cases, the first being a VAN created by a consortium for example

Fiat Ducato/Peugeot Boxer/Citroen Jumper, the other typical case is rebranding on a specific market, for

example Opel/Vauxhall/Holden. In the latter case, we often recognize which brand is the correct one by

brand logo only, but it requires very good image quality and resolution.

6.6 Task Model
For vehicles only. A car model is a unique name given to a vehicle within car maker. Car model name

example is “Golf” for “VW” make and CAR category. Please see the binary module accompanying file for

the list of possible car model names.

When a vehicle model is not uniquely recognizable in the image, we use tilde sign to denote this as for

example in “Golf ∼ Jetta”. During Golf Mk IV and Mk V era, Jetta had the same rear appearance as Golf,

so we present the user with both possibilities. There can also be cases where more than two possibilities

exist, in that case all possibilities are separated by tildes. The nonspecific recognition is typically a product

of incomplete visual information, because two or more models can be similar from frontal or rear view but

will most of the time differ from the opposite view. It is then necessary to recognize the vehicle from both

frontal and rear view at the same time using two cameras to get to the specific class information without

tilde. The tilde is present in 5% of model classification classes, but tilde classification is only returned if

the specific generation and view has non unique model appearance. In our example, Golf Mk VII will be

returned without tilde as “Golf”. A problem can arise when using SDK on a specific market, where the car

maker decided to market the model with a different name. We return EU names of models. If the model

is not available on EU market, then we use domestic model name. To handle this, the client using MMR

SDK must map the returned class ID corresponding to the violating class name to a localized class name

and discard the MMR SDK class_name return value. The mapping can be easily done by looping a set of ID

to name translation rules or using a hash map of ID to name translations.

For example, “Mitsubishi ASX ” is called “Mitsubishi Outlander Sport” in the USA. One needs then to set

up a rule such that if model class ID returned by MMR SDK is equal to 3787, then replace the class name

with string “Outlander Sport” while using theMMR SDK in the USA. Another example could be “Ford Kuga”

where Mk III and Mk IV have been sold in US and Middle East as “Ford Escape”. You see that sometimes

the name has changed only for some of the generations of the vehicle, so it is not possible to remap all

generations of amodel. In that case, themappingmust be performed based on generation class ID instead.

A list of carmakers’ brands supportingmodel recognition is available in the Technical Sheet. We cover >99%

brands of typical traffic in North America, EU, Middle East, East Asia (not China and Japan) and Australia

and >95% in South America, North and South Africa with models. In exceptional cases only frontal model

recognition is available. Models are not available for vehicles without make recognition support.

Special cases are bus brands and their models, which might only appear in a single city in the whole world.

This makes it very difficult to integrate. We are always available to include additional model support into

the MMR SDK based on customer demands.

6.7 Task Generation
For vehicles only. Car makers group models into so-called generations. Generation is commonly a new ex-

ternal visual design referred to with mark numbers and first model year, for example Mk VI (2019). Other

Eyedea Recogniton, s.r.o.

MMR Results 44

car makers can use code names instead of marks. Our notation is themark value, or the code name, some-

times expandedwith additional information, ended by comma separated list ofmodel years in parenthesis,

for example “Ford Explorer Mk VI (2019)”. In some countries, there is a requirement to proceed with reg-

istration process when changing any part of the vehicle, for example interior volume knob. Then the car

maker would present the vehicle with a new model year, that cannot be distinguished visually from the

exterior from the previous model year. As explained, we only return themodel year of the first registration

when there is no visual exterior change. In our example, that means that all “Ford Explorer” vehicles of

2019, 2020 and 2021 are recognized as “MkVI (2019)”. Another example is when there are changes to only

half of the vehicle. Typically, car makers only update the front part of the vehicle during facelift, keeping

the rear unchanged. That means a grouped generation class must be used, as in the rear generation of

“FocusMk III (2012,2015)”. This means that it cannot be distinguished whether the vehicle is of first model

year 2012 or first model year 2015 from rear view. It can be easily distinguished from frontal view as “Focus

Mk III (2012)” and “Focus Mk III (2015)”. There are also rare cases where the rear is updated but the front

remains unchanged.

Using generation recognition in practice is very difficult due to the nature of incomplete generation naming

convention by the car manufacturers. At present, we are unable to release images of vehicles correspond-

ing to the classes to help with the mapping, due to the licenses of the image files we process. We are

aggregating license conforming image files to release a catalog of vehicles in a future release. Also, in

various regions it is possible that the model year is shifted by one year. Please see the binary module ac-

companying file for the list of possible car generation names and expect a necessity to adapt the names

using name localization. There are several thousands of car generations available for recognition.

6.8 Task Variation
For vehicles only. Variation is a visual difference in a generation. Variation is typically used to distinguish

among trim levels or body types. For example, we can distinguish trim levels “Mercedes E-Class W213

(2016) AMG” and “Mercedes E-Class W213 (2016) Estate”. We can also distinguish body types as in “Mer-

cedes GLC-Class Mk I (2015,2020) Coupe” and “Mercedes GLC-Class Mk I (2015,2020) SUV”. The naming

convention in case of variations is vague and is now left for the client to interpret.

Variation only exists if we deemed the visual difference is high enough. Otherwise, all trims or all body

types will be grouped, and no variation will be available.

6.9 Task Color
For selected categories only (BUS, CAR, HVT, LGT, SPECIAL, TO12, TO34, TRUCK, VAN). Returns vehicle dom-

inant color. Only usable during day, do not use on night images without external artificial light. Color of

plastic pieces like plastic bumper or plastic front mask is ignored. When classifying rear TRUCK, if there is

a flatbed truck with container, the color of the container is dominant. A large area is used for color clas-

sification, make sure the whole vehicle fits inside the image. The best results are achieved when camera

color calibration is performed.

6.10 Task Tag
There are various tasks, each task name starting with prefix “tag_”. A tag task may typically recognize

whether a vehicle belongs to certain group, e.g. caravan, ambulance, pickup, animal transport, etc. The

system splits the recognition into frontal and rear view, whichmeans some tag tasks can only be recognized

from a certain view. In other cases, some subclasses of a tag tasks can be recognized from both views, but

Eyedea Recogniton, s.r.o.

MMR Results 45

some only from one of the views. The following table lists all recognizable tags, the availability per view

and notes regarding recognition. The tag tasks require using the score to limit the number of mistakes.

The thresholds need to be set based on required precision and recall. A typical threshold could be 0.9. Tag

type can be a yes/no, meaning the return value is either yes or no, a numeric value or a subclass value.

In the current version, we recommend using tags only on day images and turning off tags on night images.

License plate based tags are described in the following table:

Tag task name Tag type Frontal Rear Notes

tag_ambulance yes/no yes yes Ambulance or a medic.

tag_animal_transport yes/no no yes Vehicles are carrying livestock. Racing

horses transport is not recognized.

tag_caravan yes/no yes* yes* The vehicle is a caravan. We distinguish

4 types of caravans. Camper van – this is

not recognized, because from outside it

looks like a van, the difference is only in

the inside. Camper trailer – this is rec-

ognized from rear view. Camper semi-

integrated – from frontal it looks like a

classic van, recognized only from rear

view. Camper integrated – from both

views it can be uniquely distinguished

from a van, recognized from frontal and

rear view.

tag_fire_brigade yes/no yes yes Fire brigade.

tag_law_enforcement yes/no yes yes Police, Douane, Sheriff, Highway Patrol,

etc.

tag_pickup yes/no no yes Vehicle is a pickup.

tag_push_bumper yes/no yes no Vehicle’s frontal side is obstructed by

a push bumper (typical for Australia).

This significantly reduces MMR recogni-

tion accuracy, so in some cases it may

be better to remove vehicles with push

bumper from MMR recognition.

tag_rear_mount yes/no no yes The vehicle’s rear side is obstructed by

a mounted device, typically a bike or a

bike holder. This significantly reduces

MMR recognition accuracy, so in some

cases it may be better to remove vehi-

cles with rear mount from MMR recog-

nition.

tag_towed yes/no yes yes The vehicle is towed by another vehicle

and so is not moving on its own.

tag_wood_truck yes/no no yes Vehicle is carrying wood (tree trunks).

Eyedea Recogniton, s.r.o.

MMR Results 46

Bounding box based tags are described in the following table:

Tag task name Tag type Available for views Notes

tag_ambulance yes/no all Ambulance or a medic.

tag_animal_transport yes/no all except frontal

exact

Vehicle is carrying livestock. Racing

horses transport is not recognized.

tag_caravan yes/no all Vehicle is a caravan.

tag_fire_brigade yes/no all Fire brigade.

tag_helmet yes/no all The driving person has a helmet. Only use

if tag_rider_present=yes and tag_rick-

shaw=no.

tag_law_enforcement yes/no all Police, Douane, Sheriff, Highway Patrol,

etc.

tag_mixer_truck yes/no all The vehicle is a concrete mixer truck (agi-

tator truck).

tag_pickup yes/no all Vehicle is a pickup.

tag_push_bumper yes/no any frontal Vehicle’s frontal side is obstructed by

a push bumper (typical for Australia).

This significantly reduces MMR recogni-

tion accuracy, so in some cases it may

be better to remove vehicles with push

bumper from MMR recognition.

tag_rear_mount yes/no any rear The vehicle’s rear side is obstructed by a

mounted device, typically a bike or a bike

holder. This significantly reduces MMR

recognition accuracy, so in some cases it

may be better to remove vehicles with

rear mount from MMR recognition.

tag_rickshaw yes/no all The vehicle is an auto rickshaw(tuk-tuk).

tag_rider_present yes/no all There is a rider present, only for ANIMAL,

CYCLE, KICKBIKE and MTB.

tag_tank_truck yes/no all The vehicle is a tank truck (cistern).

tag_taxi yes/no all The vehicle is a taxi.

tag_towed yes/no all The vehicle is towed by another vehicle

and so is not moving on its own.

tag_truck_is_semi yes/no all except frontal

exact and rear ex-

act

The vehicle is a semi-truck. Otherwise it

is a straight-truck. Only for LGT and HVT.

tag_wood_truck yes/no all Vehicle is carrying wood (tree trunks).

Eyedea Recogniton, s.r.o.

Examples 47

7 Examples
This chapter contains the examples description which are contained in the SDK package. The examples are

used to demonstrate the functionality of the SDK, the source codes are included in the package and are in

detail described in this chapter.

7.1 Eyedea MMR SDK Example
The Eyedea MMR SDK contains an example which is used to demonstrate the basic functionality of the

MMR SDK on several input images. The example uses known position of the road users in the images to

recognize their viewand category; in case of vehicles alsomake,model, color, and tags using the SDK library.

This chapter describes in detail the example together with references to important parts of this document.

The example is in the folder [EyedeaMMR]/examples/example-mmr-API/. The folder contains all source

code and files needed for a successful build. In the case ofWindows Visual Studio 2019 project is included,

in case of Linux a Makefile is included.

7.1.1 API Linking
The EdfAPI structure serves to access library API independently on type of the libeyedentify linking (explicit

or implicit). To fills up the API structure, the edfLinkAPI function can be used. For explicit linking, the library

must be first loaded and edfLinkAPI function linked. In the example linking macros from er_explink.h are

used for that. For implicitly linked library the function should be called with “nullptr” instead of library

handle.

EdfAPI edfAPI;
#ifdef EXPLICIT_LINKING
// explicitly link library
std::string edf_lib_path = std::string(EDF_SDK_PATH) + "lib/" + std::string(EDF_SHLIB_NAME);
shlib_hnd hdll = nullptr;
ER_OPEN_SHLIB(hdll, edf_lib_path.c_str());
if (hdll==nullptr) {

std::cout << "Library␣'" << edf_lib_path << "'␣not␣loaded!\n" << ER_SHLIB_LASTERROR << "\n";
return -1;

}
fcn_edfLinkAPI pfLinkAPI=nullptr; /* The function which will link all other api functions */
ER_LOAD_SHFCN(pfLinkAPI, fcn_edfLinkAPI, hdll, "edfLinkAPI");
if (pfLinkAPI==nullptr) {

std::cout << "Loading␣function␣'esLinkAPI'␣from␣" << edf_lib_path << "␣failed!\n";
return -1;

}
if (pfLinkAPI(hdll, &edfAPI) != 0){

std::cout << "Function␣edfLinkAPI()␣returned␣with␣error!\n";
return -1;

}
#else
edfLinkAPI(nullptr, &edfAPI);
#endif

Eyedea Recogniton, s.r.o.

Examples 48

7.1.2 Initialization
First thing to do is the Eyedea MMR SDK module initialization using the EdfInitConfig structure and the

edfInitEyedentify function. In the example the setEdfInitConfig function fills up the intitialization structure.

EdfInitConfig setEdfInitConfig(const char *path, const char *name, ERComputationMode mode,
int gpu_device_id, int num_threads)

{
EdfInitConfig config{};
config.module_path = path; // e.g. ../../sdk/modules/edftf2lite/
config.model_file = name; // e.g. MMR_VCMMCT_FAST_2024Q4.dat

// or MMRBOX_VCMMCT_2024Q4.dat
config.computation_mode = mode; // e.g. ER_COMPUTATION_MODE_CPU
config.gpu_device_id = gpu_device_id;
config.num_threads = num_threads;
return config;

}

The EdfInitConfig structure is filled first with the path to the Eyedea MMR module, then the name of the

binary model to use, then the computation mode and the ID of the GPU are specified, and finally the

number of threads used for image crop and descriptor computation in CPU mode. In case of CPU com-

putation, “gpu_device_id” parameter is not used (e.g. set to 0). If the initialization was successful, zero

code is returned from the edfInitEyedentify function. For other return codes refer the function reference:

edfInitEyedentify.

7.1.3 Input Image Loading
Before theMMRengine could be used, image datamust be loaded anddecoded. The example uses the Eye-

dea Recognition’s custom image structure ERImage to manipulate with the images. The image is loaded to

the ERImage structure using the erImageRead. In real scenario, the client would probably use erImageAl-

locateAndWrap to wrap the client’s already existing image memory.

// Create the ERImage.
ERImage image;
// Read the input image
int image_read_code = api.erImageRead(&image, input.imageFilename.c_str());
// Check whether the image was loaded.
if (image_read_code != 0) {

// Handle errors
}
// Work with image
// ...

Eyedea Recogniton, s.r.o.

Examples 49

7.1.4 Cropping the Input Image
The engine requires the input image to be cropped and transformed to have the object of interest aligned

and to have the image in correct resolution and color and data format. For such image transformations,

the edfCropImage function is used. First the cropping parameters in the EdfCropParamsmust be set. The

cropping parameters are allocated with the edfCropParamsAllocate function. There are two possible se-

tups.

EdfCropParams cropParams;
edfCropParamsAllocate(EDF_MMR_CROP_POINTS , EDF_MMR_CROP_VALUES , &cropParams);
// Set license plate center in the input image.
EDF_LP_CENTER_X(cropParams) = 475.0;
EDF_LP_CENTER_Y(cropParams) = 573.0;
// Set license plate resolution in pixels per meter.
// -> License plate has 134 pixels in the image and
// Czech LP is 0.52 m wide: 134/0.52 = 257.7
EDF_LP_SCALE_PX_PER_M(cropParams) = 257.7;
// Set license plate rotation compensation in degrees.
EDF_LP_ROTATION(cropParams) = 2.0;

// Create the pointer to the cropped EdfImage.
EdfImage *cropImage = NULL;
// Create the image crop with respect to the license plate.
int cropResultCode = edfCropImage(&image, &cropParams, module_state, &cropImage, NULL);
// Set the image data pointer to NULL:
// data belongs to the cv::Mat structure and will be deallocated there.
image.data = NULL;
// Free the image structure fields. The image is not needed anymore.
freeEdfImage(&image);
// Free vehicle crop parameters.
freeEdfCropParams(&cropParams);
// Check the crop result.
if (cropResultCode != 0) {

// Handle the error.
}

License plate-based MMR task requires the center of the license plate in the image, scale in pixels per

meter and rotation compensation to be set. The 2D center of the vehicle’s license plate in the image is

set using the macro EDF_LP_CENTER_X for the x coordinate and the macro EDF_LP_CENTER_Y for the y

coordinate. The scale of the vehicle in pixels per meter is obtained by dividing the width of the license

plate in pixels by the width of the license plate in meters (for details see the example code above) and

set using the macro EDF_LP_SCALE_PX_PER_M. The last parameter - rotation compensation is set using

the macro EDF_LP_ROTATION. The rotation compensation parameter defines the in-plane rotation of the

input image with the center of the rotation in the center of the license plate.

Eyedea Recogniton, s.r.o.

Examples 50

EdfCropParams cropParams;
edfCropParamsAllocate(EDF_MMRBOX_CROP_POINTS , EDF_MMRBOX_CROP_VALUES , &cropParams);
// Set license plate center in the input image.
EDF_MMRBOX_TOP_LEFT_X(cropParams) = 100.0;
EDF_MMRBOX_TOP_LEFT_Y(cropParams) = 50.0;
EDF_MMRBOX_BOTTOM_RIGHT_X(cropParams) = 200.0;
EDF_MMRBOX_BOTTOM_RIGHT_Y(cropParams) = 250.0;

// Create the pointer to the cropped EdfImage.
EdfImage *cropImage = NULL;
// Create the image crop with respect to the license plate.
int cropResultCode = edfCropImage(&image, &cropParams, module_state, &cropImage, NULL);
// Set the image data pointer to NULL:
// data belongs to the cv::Mat structure and will be deallocated there.
image.data = NULL;
// Free the image structure fields. The image is not needed anymore.
freeEdfImage(&image);
// Free vehicle crop parameters.
freeEdfCropParams(&cropParams);
// Check the crop result.
if (cropResultCode != 0) {

// Handle the error.
}

Bounding box based MMR task requires a 2D rectangle covering the whole vehicle. In case of vehicle com-

bination (tractor+trailer, car+trailer), each vehicle needs its separate bounding box and will get a separate

classification. The top left corner of the rectangle is specified using macros EDF_MMRBOX_TOP_LEFT_X

and EDF_MMRBOX_TOP_LEFT_Y for column and row coordinates. The top left corner of the rectangle

is specified using macros EDF_MMRBOX_BOTTOM_RIGHT_X and EDF_MMRBOX_BOTTOM_RIGHT_Y for

column and row coordinates.

With the cropping parameters prepared, the input image can be processedwith the function edfCropImage

which crops and transforms the input image with respect to the cropping parameters defined above.

While only the cropped ERImage is required for further processing the original ERImage with the input

image data can be deleted using the function erImageFree. The input image is loaded with the OpenCV

framework to the cv::Mat structure and the image data are deleted with that structure, therefore the data

array of the ERImage must be set to NULL to avoid the OpenCV’s image data deletion with erImageFree

function.

7.1.5 Descriptor Computation
The core of the recognition process and most time-consuming operation is done during the descriptor

computation. The descriptor is a condensed representation of the recognized object, and it is optimized

for efficient classification and comparison.

The descriptor computation is doneusing the edfComputeDesc function. The function requires the cropped

input image. The computation takes from tens to hundreds of milliseconds depending on the binarymodel

and hardware used (for more information about the computation times see the document Eyedea MMR

SDK - Technical sheet).

The image crop is not needed after the descriptor is computed; it can be deleted. The function edf-

FreeCropImagemust be used for image crop deletion because the crop was generated inside the module,

so it must be also freed there. Together with the image crop data the pointer to the ERImage structure is

freed.

Eyedea Recogniton, s.r.o.

Examples 51

// Create the EdfDescriptor structure.
EdfDescriptor descriptor;
// Compute the descriptor. Crop image is used as an input,
// the output is copied to the EdfDescriptor structure.
int computeDescResultCode = edfComputeDesc(cropImage, module_state, &descriptor, NULL);
// Free the crop image data. The crop is not needed anymore.
edfFreeCropImage(module_state, &cropImage);
// Check the descriptor computation result.
if (computeDescResultCode != 0) {

// Handle error.
}

7.1.6 Classification
The classification is a process of getting the corresponding classes from the computed descriptor. Also,

it is the process of getting the human readable results of the road user’s recognition. The only input of

the classification is the descriptor combined with the module which was used for the descriptor compu-

tation. The process of classification is done using the function edfClassify which stores the result to the

EdfClassifyResult structure.

The EdfClassifyResult structure contains the array of EdfClassifyResultValue values. The values contain the

best result for each class. In the case of MMR the classes are view, category, make, model (possibly also

generation and variation), color and tags. The result contains the name of the task (i.e., “make”), the result

class name (i.e., “VW”), the ID of the result class (i.e., 43) and the score of the result (i.e., 0.95041). The

availability of the classes is dependent on the used model (for more information about the current binary

models see the document Eyedea MMR SDK - Technical sheet).

// Initialize the EdfClassifyResult structure pointer.
EdfClassifyResult *classify_result = NULL;
// Run the classification. The result will be copied
// to the newly created EdfClassifyResult structure.
int resultCode = edfClassify(&descriptor, module_state, &classify_result, NULL);
// Check the classification result.
if (resultCode == 0 && classify_result) {

// Iterate over all result entries.
for (unsigned int i = 0; i < classify_result->num_values; i++) {

// Get the classification result value name.
std::string name(classify_result->values[i].task_name,
classify_result->values[i].task_name_length);
// Get the classification result value.
std::string value(classify_result->values[i].class_name,
classify_result->values[i].class_name_length);
// Get the classification result score.
float score = classify_result->values[i].score;

}
} else {

// Handle error.
}
// Free the classification result.
edfFreeClassifyResult(&classify_result, module_state);
// Free the descriptor fields.
edfFreeDesc(&descriptor);

The descriptor can be deleted after the classification is done. The deletion of the descriptor is done using

the SDK API function edfFreeDesc. When the classification result EdfClassifyResult is not needed anymore

(for example after the results were saved to the DB or printed out) it must be deleted using the edfFreeClas-

sifyResult function. The function goes through the contained result values and deletes them all together

with the pointer to the structure.

Eyedea Recogniton, s.r.o.

Examples 52

7.1.7 Cleaning Up
At the end, when the work with the Eyedea MMR SDK instance is finished (for example at the end of the

program), the SDK instance must be deleted together with all underlying structures. To delete it use the

API function edfFreeEyedentify, which is designed for such purpose.

// Free the module. All module internal structures
// will be deleted and program can be finished.
edfFreeEyedentify(&module_state);

During the function run the significant amount of memory is freed because the whole binary model, which

is loaded in the memory after the instance initialization, is freed.

Eyedea Recogniton, s.r.o.

MMR SDK Licensing 53

8 MMR SDK Licensing
MMR SDK uses the third-party framework developed by Thales for software protection and licensing. The

SDK is protected against reverse engineering and unlicensed execution using hardware USB keys. The SDK

can not be used without a USB license key with a valid license except in tral version, which uses software

key instead.

8.1 License Key Types
The SDK allows loading a license using various hardware key types which are listed in the following table.

The keys differ by the number of licenses they can contain (Pro andMax versions), by physical dimensions,

ability to contain time-limited licenses (Time versions) and ability to distribute licenses over the network

(Net versions).

SKU Product SKU Product

SH-PRO Sentinel HL Pro SH-BRD
Sentinel HL Max

(Board form factor)

SH-MAX Sentinel HL Max SH-TIM Sentinel HL Time

SH-MIC
Sentinel HL Max

(Micro form factor)
SH-NET Sentinel HL Net

SH-CHP
Sentinel HL Max

(Chip form factor)
SH-NTT Sentinel HL NetTime

8.2 Licenses Overview
Several licenses are available for the MMR SDK. The licenses differ in the type of the binary models which

can be loaded, the time period for which the license is valid, and the number of allowed function execu-

tions.

8.2.1 Perpetual License
A perpetual license is the least restrictive license available. It allows the user to use the license in specified

number of instances for unlimited time and unlimited number of executions. This license type is used for

products which will be deployed to the end-user.

8.2.2 Time-Limited License
A time-limited license allows to set a restriction on the time for which the license is valid. The license

validity end date or the number of the days for which the license is valid after the first use can be set. This

Eyedea Recogniton, s.r.o.

MMR SDK Licensing 54

license can be set on Time keys only (see License Key Types). This type of license is used mainly in the

Developer package.

8.2.3 Execution Counting
An execution counting license allows counting the number of times the license was logged in. The SDK is

designed in such a way that it logs in the license every time a specified SDK function is called. It allows

limiting the number of executions with the license. This type of license is used mainly in the Developer

package.

8.3 License Management
The license protection software provides a web interface for license management. The web interface can

be found on the address http://localhost:1947 opened in the common web browser. It allows the user to

list the connected license keys, see the details of the arbitrary license key, update the license, and several

other functions.

8.3.1 Connected License Keys
The list of license keys currently plugged in the computer is available at http://localhost:1947/_int_/de-

vices.html. The list contains basic information about each key, including the location of the key (Local or

IP/name of the remote machine), Vendor ID, Key ID, Key Type, Configuration, Version and the number of

connected Sessions. For each key, it is possible to list the contained license products, features and sessions

using the buttons Products, Features and Sessions. For easy identification, the USB key LED can be blinked

using the Blink On button in the Actions column. The unique key identification file can be downloaded

using the C2V button.

Web interface with list of plugged keys on http://localhost:1947/_int_/devices.html

8.3.2 License Key Details
Detailed information about a key can be acquired by clicking on the Features button in the Connected

License Keys list or at http://localhost:1947/_int_/features.html?haspid=KEYID, where the KEYID is the ID

Eyedea Recogniton, s.r.o.

http://localhost:1947
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/features.html?haspid=KEYID

MMR SDK Licensing 55

of the key. The web page contains information about the licenses contained on the key. The set of all

the features represents the whole license. Each Feature controls a different part of the SDK workflow

(initialization, binary model selection, descriptor computation, …).

Web interface with key 517285691

details on http://localhost:1947/_int_/features.html?haspid=517285691

8.4 License Update
The license can be updated using a special *.v2c file, which is emitted by the licensor of the software. The

license update file is generated for a specific license key ID and only that key can be updated using the file.

There are two ways of updating the license: Web Interface and Command Line.

The license update must be done on the computer where the protection software supplied with the SDK

package is installed. For more information about the protection software installation see the chapter In-

stallation Guide.

IMPORTANT: The hardware protection key dongle with the license to be updated needs to be con-

nected to the machine where the license update will be applied.

8.4.1 Web Interface
The first option allows the user to update the license using the web interface of the license management

software Sentinel Admin Control Center. The web interface which can be opened in all modern browsers

is located at http://localhost:1947/_int_/checkin.html.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/features.html?haspid=517285691
http://localhost:1947/_int_/checkin.html

MMR SDK Licensing 56

Web interface for license update on http://localhost:1947/_int_/checkin.html

How to update the license:

1. Open the link http://localhost:1947/_int_/checkin.html in the web browser.

2. Click on the Select File button and select the *.v2c file which you want to use for the update.

3. Click on the Apply File button.

4. A webpage with the result of the license update is shown.

8.4.2 Command Line
The secondmethod of updating the license is by using theWindows command line or a Linux console. This

approach can be very useful when applying the update remotely or on many devices. It is also suitable for

automating the license update procedure. This option requires basic knowledge of theWindows command

line or some Linux console. The license update file *.v2c is applied using the hasp_update utility from the

folder hasp/ located in the corresponding SDK package root.

Windows command line

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Linux console

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

./hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Eyedea Recogniton, s.r.o.

http://localhost:1947/_int_/checkin.html
http://localhost:1947/_int_/checkin.html

Third Party Software 57

9 Third Party Software
The MMR SDK uses third party software libraries in accordance with their licenses. The licenses can be

found under [MMR_SDK]/documentation/3rdparty-licenses.

9.1 Used Libraries
Here is a complete list of all libraries used, in alphabetical order:

• Boost

• OpenBLAS

• OpenCL

• OpenCV

• OpenGL

• OpenSSL

• Protobuf

• Tensorflow Lite

• TensorRT

• ZLib

The following statements are published to fulfill the license terms of the respective libraries:

“This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit

(http://www.openssl.org/).”

Eyedea Recogniton, s.r.o.

	Product Description
	Technical Details
	System Workflow

	Installation Guide
	Pre-installation
	Sentinel LDK Installation
	Windows
	Linux

	Verification of Installation
	Installation Failures
	Managing Licenses
	License Error Codes
	TensorRT
	TensorRT MMR SDK Models
	Generating Device Specific Models
	Known Issues

	OpenGL Prerequisites

	ERImage Application Interface
	Image Format
	BGR
	Gray
	YCbCr I420
	BGRA
	YCbCr NV12

	Application Interface
	Enumerators
	ERImageColorModel
	ERImageColorModel
	ERImageDataType
	ERImageDataType

	Structures
	ERImage
	ERImage

	Functions
	erImageAllocate
	erImageAllocate
	erImageAllocateBlank
	erImageAllocateBlank
	erImageAllocateAndWrap
	erImageAllocateAndWrap
	erImageCopy
	erImageCopy
	erImageGetDataTypeSize
	erImageGetDataTypeSize
	erImageGetColorModelNumChannels
	erImageGetColorModelNumChannels
	erImageGetPixelDepth
	erImageGetPixelDepth
	erVersion
	erVersion
	erImageRead
	erImageRead
	erImageWrite
	erImageWrite
	erImageFree
	erImageFree

	ER Types
	Enumerators
	ERComputationMode

	Structures
	ERPoint2i
	ERPoint2f (ERPoint)
	ERRoI
	ERRotatedRect

	Functions
	erRotatedRectToPoints

	SDK Application Interface
	Structures
	EdfInitConfig
	EdfDescriptor
	EdfPoints
	EdfValues
	EdfCropParams
	EdfClassifyResultValue
	EdfClassifyResult
	EdfCropImageConfig
	EdfComputeDescConfig
	EdfClassifyConfig

	Functions
	Main API
	edfInitEyedentify
	edfFreeEyedentify
	edfCropImage
	edfComputeDesc
	edfCompareDescs
	edfClassify
	edfModelVersion
	edfAllocDesc
	edfFreeDesc
	edfFreeCropImage
	edfFreeClassifyResult

	EdfCropParams
	edfCropParamsAllocate
	edfCropParamsWrap
	edfCropParamsFree

	MMR Results
	EdfClassifyResult and EdfClassifyResultValue
	Task View
	Task View8
	Task Category
	Task Make
	Task Model
	Task Generation
	Task Variation
	Task Color
	Task Tag

	Examples
	Eyedea MMR SDK Example
	API Linking
	Initialization
	Input Image Loading
	Cropping the Input Image
	Descriptor Computation
	Classification
	Cleaning Up

	MMR SDK Licensing
	License Key Types
	Licenses Overview
	Perpetual License
	Time-Limited License
	Execution Counting

	License Management
	Connected License Keys
	License Key Details

	License Update
	Web Interface
	Command Line
	Windows command line
	Linux console

	Third Party Software
	Used Libraries

